期刊文献+

基于核矩阵的改进支持向量聚类算法 被引量:1

An Improved Method for Support Vector Clustering Based on Kernel Matrix
下载PDF
导出
摘要 支持向量聚类(Support Vector Clustering,SVC)算法主要分为两个阶段:训练阶段和聚类分配阶段。由于需要计算邻接矩阵,聚类分配阶段消耗的计算时间远比训练阶段多。本文在计算邻接矩阵前先利用核矩阵对数据进行初始分类,在每个初始类中寻找一个代表点。因为代表点和它所在的初始类拥有相同的簇标号,所以只需计算这些代表点集上的邻接矩阵。给每个代表点分配一个簇标号,代表点所代表的初始类内的数据点也就获得相同的簇标号,这样将有效减少聚类分配的时间。数值实验结果表明,本文提出的改进SVC算法不仅显著改善了SVC算法的时间性能,而且在聚类精度上也有一定程度的提高。 The support vector clustering(SVC) algorithm consists of two phases,which are training and cluster assignment. Because of the calculation of the adjacency matrix,the latter phase needs to consume much more computing time than the former. To overcome the disadvantage,in this paper,before calculating the adjacency matrix,we first make use of the kernel matrix to decompose the given data set into a small number of disjoint groups where each group is represented by its representative point and all of its member points belong to the same cluster.Then label the representative points,which results in labeling the whole data points.This method significantly reduces the time of cluster assignment.Experimental results show that the improved SVC algorithm proposed in this paper outperforms classical SVC method,not only for time complexity,but also for clustering precision.
作者 郭崇慧 李芳
出处 《情报学报》 CSSCI 北大核心 2010年第3期422-427,共6页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金资助项目(10571018 70871015) 国家高技术研究发展计划(863计划)资助项目(2008AA04Z107)
关键词 支持向量聚类 邻接矩阵 核矩阵 support vector clustering adjacency matrix kernel matrix
  • 相关文献

参考文献13

  • 1Xu R,Wunsch D.Survey of Clustering Algorithms[J].IEEE Transaction on Neural Networks,2005,16(3):645-678. 被引量:1
  • 2Han J,Kamber M.Data Mining:Concepts and Techniques,Second Edition[M].Morgan Kaufmann,San Francisco,2006. 被引量:1
  • 3Filippone M,Camastra F,Masulli F,et al.A Survey of Kernel and Spectral Methods for Clustering[J].Pattern Recognition,2008,41(1):176-190. 被引量:1
  • 4张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 5Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. 被引量:1
  • 6Tax D M J,Duin R P W.Support Vector Domain Description[J].Pattern Recognition Letters,1999,20(11-13):1191-1199. 被引量:1
  • 7Ben-Hur A,Horn D,Siegelmann H T,et al.Support Vector Clustering[J].Journal of Machine Learning Research,2001,2(12):125-137. 被引量:1
  • 8Scholkopf B,Williamson R,Smola A,et al.Support Vector Method for Novelty Detection[C] // Advances in Neural Information Processing System,2000,12:582-588. 被引量:1
  • 9吕常魁,姜澄宇,王宁生.一种支持向量聚类的快速算法[J].华南理工大学学报(自然科学版),2005,33(1):6-9. 被引量:11
  • 10Lee J,Lee D.An Improved Cluster Labeling Method for Support Vector Clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):461-464. 被引量:1

二级参考文献12

  • 1Scholkopf B, Williamson R, Smola A, et al. Support vector method for novelty detection [J]. Advances in Neural Information Processing Systems ,2000,12:582 - 588. 被引量:1
  • 2Ben-Hur A, Horn D,Siegelmann H T, et al. Support vector clustering [J]. Journal of Machine Learning Research,2001(2):125 - 137. 被引量:1
  • 3Ben-Hur A, Horn D, Siegelmann H T,et al. A support vector method for hierarchical clustering [J]. Advances in Neural Information Processing Systems, 2001,13 : 367 -373. 被引量:1
  • 4Horn D Clustering via Hilbert space [ J ]. Physica A,2001,302:70 -79. 被引量:1
  • 5Yang J H,Estivill-Castro V, Chalup S K. Support vector clustering through proximity graph modeling [ A]. Proc of 9th International Conference on Neural Information Processing ( ICONIP' 02) [ C ]. Singapore: IEEE Press,2002. 898 - 903. 被引量:1
  • 6Vapnik V N. The Nature of Statistical Learning Theory[ M ]. Heidelberg : Springer Verlag, 1995. 被引量:1
  • 7Tax D M J, Duin R P W. Support vector domain description [ J ]. Pattern Recognition Letters, 1999,20 ( 11 -13) :1 191 - 1 199. 被引量:1
  • 8Tax D M J, Duin R P W. Data domain description using support vectors [A]. Verleysen M. Proceedings of ESANN' 1999 [ C]. Brussels : D-facto, 1999.21 - 23. 被引量:1
  • 9Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Scholkopf B, Burgess C J C, Smolla A J. Advances in kernel methods-support vector learning [C]. Cambridge: MIT Press,1999. 185 - 208. 被引量:1
  • 10Cristianini N, Scholkopf B. Support vector machines and kernel methods : The new generation of learning machines[J]. AI Magazine,2002,23(3) :31 -41. 被引量:1

共引文献204

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部