期刊文献+

Hydrogen Sulfide Alleviates Aluminum Toxicity in Germinating Wheat Seedlings 被引量:49

Hydrogen Sulfide Alleviates Aluminum Toxicity in Germinating Wheat Seedlings
原文传递
导出
摘要 Protective role of hydrogen sulfide (H2S) on seed germination and seedling growth was studied in wheat (Triticum) seeds subjected to aluminum (Al3+) stress. We show that germination and seedling growth of wheat is inhibited by high concentrations of AICI3. At 30 mmol/L AICI3 germination is reduced by about 50% and seedling growth is more dramatically inhibited by this treatment. Pre-incubation of wheat seeds in the H2S donor NaHS alleviates AICI3-induced stress in a dose-dependant manner at an optimal concentration of 0.3 mmol/L. We verified that the role of NaHS in alleviating Al3+ stress could be attributed to H2S/HS- by showing that the level of endogenous H2S increased following NaHS treatment. Furthermore, other sodium salts containing sulfur were ineffective in alleviating Al3+ stress. NaHS pretreatment significantly increased the activities of amylases and esterases and sustained much lower levels of MDA and H2O2 in germinating seeds under Al3+ stress. Moreover, NaHS pretreatment increased the activities of guaiacol peroxidase, ascorbate peroxidase, superoxide dismutase and catalase and decreased that of lipoxygenase. NaHS pretreatment also decreased the uptake of Al3+ in AICI3-treated seed. Taken together these results suggest that H2S could increase antioxidant capability in wheat seeds leading to the alleviation of Al3+ stress. Protective role of hydrogen sulfide (H2S) on seed germination and seedling growth was studied in wheat (Triticum) seeds subjected to aluminum (Al3+) stress. We show that germination and seedling growth of wheat is inhibited by high concentrations of AICI3. At 30 mmol/L AICI3 germination is reduced by about 50% and seedling growth is more dramatically inhibited by this treatment. Pre-incubation of wheat seeds in the H2S donor NaHS alleviates AICI3-induced stress in a dose-dependant manner at an optimal concentration of 0.3 mmol/L. We verified that the role of NaHS in alleviating Al3+ stress could be attributed to H2S/HS- by showing that the level of endogenous H2S increased following NaHS treatment. Furthermore, other sodium salts containing sulfur were ineffective in alleviating Al3+ stress. NaHS pretreatment significantly increased the activities of amylases and esterases and sustained much lower levels of MDA and H2O2 in germinating seeds under Al3+ stress. Moreover, NaHS pretreatment increased the activities of guaiacol peroxidase, ascorbate peroxidase, superoxide dismutase and catalase and decreased that of lipoxygenase. NaHS pretreatment also decreased the uptake of Al3+ in AICI3-treated seed. Taken together these results suggest that H2S could increase antioxidant capability in wheat seeds leading to the alleviation of Al3+ stress.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2010年第6期556-567,共12页 植物学报(英文版)
基金 supported by the Great Project of Natural Science Foundation from Anhui Provincial Education Department(ZD200910) the Natural Science Foundation of Anhui Province(070411009) the innovation funding to undergraduatestudents at HFUT (XS08072, 0637)
  • 相关文献

参考文献4

二级参考文献4

共引文献116

同被引文献393

引证文献49

二级引证文献289

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部