期刊文献+

旋锻Mo-Ti-Zr合金棒材的退火行为 被引量:2

Annealing behavior of rotary forging Mo-Ti-Zr alloy bars
下载PDF
导出
摘要 采用冷等静压、高温烧结和直接高温旋锻的方法制备Mo-Ti-Zr合金棒材,研究不同退火温度对合金力学性能与显微组织的影响以及对断面收缩率为30%的旋锻Mo-Ti-Zr合金棒材的退火行为。结果表明:当退火温度低于1000℃时,随着退火温度的升高,Mo-Ti-Zr合金硬度未急剧下降,抗拉强度和伸长率逐渐提高;经900℃退火后,合金抗拉强度达到669MPa,伸长率达到3.1%,获得良好的综合力学性能;当退火温度在800~1000℃范围内时,Mo-Ti-Zr合金晶粒发生再结晶细化;旋锻态Mo-Ti-Zr合金的断口主要为穿晶解理断裂,随着退火温度的提高,出现较多细晶粒的穿晶断裂和沿晶断裂。 The Mo-Ti-Zr alloy bars were prepared by cold isostatic pressing,high temperature sintering and direct rotary forging.The effects of the annealing temperature on the mechanical properties and microstructure of the alloy and the annealing behavior of this rotary forging Mo-Ti-Zr alloy bars deformed by 30% were investigated.The results show that,with increasing annealing temperature before 1 000 ℃,the hardness of the Mo-Ti-Zr alloy bars decreases slowly whereas the tensile strength and elongation increase.The tensile strength and elongation reach 669 MPa and 3.1%,respectively,at 900 ℃.The recrystallization of the Mo-Ti-Zr alloy bars occurs and the grains are refined at the annealing temperature of 800-1 000 ℃.For the rotary forging Mo-Ti-Zr alloy bars,its fracture is mainly a transcrystalline fracture type.The mixed type of transcrystalline fracture and intergranular fracture in the refined grains increases with increasing annealing temperature.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2010年第5期866-871,共6页 The Chinese Journal of Nonferrous Metals
基金 国家杰出青年科学基金资助项目(50925416) 国防军工新材料资助项目(JPPT-115-2-662)
关键词 Mo-Ti-Zr合金 冷等静压 高温烧结 旋锻 退火 再结晶 Mo-Ti-Zr alloy cold isostatic pressing high temperature sintering rotary forging annealing recrystallization
  • 相关文献

参考文献15

  • 1SHI HUI-JI,KORN C,PLUVINAGE G.High temperature isothermal and thermomechanical fatigue on a molybdenum-based alloy[J].Mater Sci Eng A,1998,247:180-186. 被引量:1
  • 2KURISHITA H,KITSUNAI Y,SHIBAYAMA T.Development of Mo alloys with improved resistance to embrittlement by recrystallization and irradiation[J].Journal of Nuclear Materials,1996,233/237:557-564. 被引量:1
  • 3MADAY M F.Low cycle fatigue behaviour of TZM molybdenum alloy in divertor water coolant[J].Journal of Nuclear Materials,1996,233/237:1397-1402. 被引量:1
  • 4吴新光,杜晓斌.TZM合金及其特性[J].中国钼业,2005,29(5):30-31. 被引量:41
  • 5WARREN J.The 700 ℃ tensile behavior of Mo-0.5Ti-0.08Zr-0.025(TZM)extruded bar measured transverse and parallel to the billet extrusion axis[J].International Journal of Refractory Metals & Hard Materials,1998,16:149-157. 被引量:1
  • 6COCKERAM B V.The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC),molybdenum-0.5pct titanium-0.1pct zirconium(TZM),and oxide dispersion strengthened (ODS) molybdenum flat products[J].Mater Sci Eng A,2006,418:120-136. 被引量:1
  • 7郑欣,张清,张军良,李中奎.Mo-Ti-Zr棒材加工方法的分析[J].稀有金属快报,2004,23(7):29-31. 被引量:5
  • 8蔡宗玉,金建民,陈桦.高性能TZM钼合金棒研制[J].上海钢研,1993(3):9-12. 被引量:3
  • 9陈桦.热处理温度对0.35mm TZM板材性能和组织的影响.稀有金属材料与工程,2002,31(2):89-93. 被引量:1
  • 10FAN Jing-lian,LU Ming-yuan,CHENG Hui-chao.Effect of alloying elements Ti,Zr on the property and microstructure of molybdenum[J].International Journal of Refractory Metals & Hard Materials,2009,27:78-82. 被引量:1

二级参考文献20

  • 1王慧芳,俞淑延.粉末冶金TZM合金板材的性能及其影响因素[J].粉末冶金技术,1990,8(2):75-84. 被引量:7
  • 2左铁镛 王占一 等.间隙杂质及其分布对烧结钼脆性的影响[J].中南矿冶学院学报,1982,13(1):47-47. 被引量:2
  • 3[3]Gnesin P. High-Purity Molybdenum Alloy Technology:New Possibilities [C]. In: Kneringer G,Rodhammer P,wil hartitz P eds. Proceedings of the 14th International Plansee Seminar, Plansee AG, Reutte, Austria:RWF,1997,1:568-573 被引量:1
  • 4[4]Saito N. et at. Recrystallization Behaviou of Tungsten Alloys and Molybdenum Alloys [C]. In: Kneringer G,Rodhammer P, wilhartitz P eds. Proceedings of the 14th International Plansee Seminar, Plansee AG,Reutte,Austria:RWF, 1997,1:792~ 804 被引量:1
  • 5Sfivatsan T S, Narendra N, Troxell J D, Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy[J]. Materials and Design, 2000,21(3): 191 - 198. 被引量:1
  • 6Cheng Jian-yi, Wang Ming-pu, Li Zhou, et al. Fabrication and properties of low oxygen grade Al2O3 dispersion strengthened copper alloy [J]. Trans Nonferrous Met Soc China,2004,14(1): 121 - 126. 被引量:1
  • 7Lee J S, Jung J Y, Lee Eon-Sik, et al. Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming[J]. Materials Science and Engineering, 2000, A277(1-2) :274 - 283. 被引量:1
  • 8Groza J R, Gibeling J C. Principles of particle selection for dispersion-strengthened copper[ J]. Materials Science Engineering A, 1993, A171 (1-2): 115 -125. 被引量:1
  • 9Nagorka M S, Levi C G, Lucas G E, Ridder S D. Potential of rapid solidification in oxide-dispersion- strengthened copper alloy development[J]. Materials Science Engineering A, 1991, A142(2): 277 - 289. 被引量:1
  • 10Meslet Al-Haijri, Aldo Melendez, Woods R, Srivatsan T S. Influence of heat treatment on tensile response of an oxide dispersion strengthened copper[ J].Journal of Alloys and Compounds, 1999,290:290 - 297. 被引量:1

共引文献68

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部