期刊文献+

基于MRF的复杂背景下缓动目标分割方法 被引量:3

A Slow-Moving-Object Segmentation Technology Based on MRF Under Complex Background
下载PDF
导出
摘要 提出了一种基于MRF的复杂背景下缓目标分割方法。该方法采用基于逆向光流场的背景抑制技术和基于加权直方图的灰度场建模方法。前者对相邻视频图像进行逆向光流变换使得两帧图像中的目标投影对齐,进而对两帧图像进行差分运算并设定阈值分离目标和背景,得到了较为完整的缓动目标初始分割;后者对初始标号场各像素分配信任度,进而统计信任度并建立加权灰度直方图,而后依据加权直方图建立了准确的图像灰度模型。在此基础上,在MAP-MRF框架内对视频图像进行分割。进行仿真实验并采用空间准确度和时间一致性标准评价实验结果,证明算法具有有效性和鲁棒性。 A slow-moving-object segmentation technology based on MRF under complex background is proposed in this paper which adopts the technology of background suppression based on inverted optical flow field and the plan of gray field modeling based on weighted histogram.The technology of background suppression firstly conducts inverted optical flow transformation on adjacent frame to align object projections,then segments the object from the background by a given threshold value based on the adjacent frame difference to obtain coarse segmentation of the images;The plan of gray field modeling firstly distributes trust degree to pixels of the coarse segmentation image,then establishes weighted histogram adopting the statistics of trust degrees,and finally build exact gray field modeling based on the weighted histogram.Based on these,video images are segmented under the MAP-MRF framework.Experiments are dong and the results are evaluated by the criterias of spatial accuracy and temporal coherency which shows that these metods are valid and robust.
出处 《信号处理》 CSCD 北大核心 2010年第6期911-916,共6页 Journal of Signal Processing
关键词 图像分割 光流场 加权直方图 信任度 Image Segmentation Optical Flow Field Weighted Histogram Trust Degree
  • 相关文献

参考文献10

  • 1Michael G. Ross and Leslie Pack Kaelbling, Segmentation According to Natural Examples: Learning Static Segmentation from Motion Segmentation [ J ], IEEE Transactions On Pattern Analysis And Machine Intelligence, 2009, Vol. 31, No. 4: 661-676. 被引量:1
  • 2Andreas Klaus, Mario Sormann and Konrad Kamer, Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure [ C], The 18th International Conference on Pattern Recognition, 2006. 被引量:1
  • 3Jue Wang and Michael F. Cohen, An Iterative Optimization Approach for Unified Image Segmentation and Matting [ C ] , Proceedings of the Tenth IEEE International Conference on Computer Vision, 2005. 被引量:1
  • 4詹劲峰,戚飞虎,王海龙.基于时空马尔可夫随机场的运动目标分割技术[J].通信学报,2000,21(11):63-68. 被引量:17
  • 5陆明俊,王润生.基于MRF模型的可靠的图像分割[J].电子学报,1999,27(2):87-89. 被引量:16
  • 6Kamijo S. , Ikeuchi K. and Sakauchi M. : Segmentations of spatio-temporal images by spatio-temporal markov random field model [C] ,Proceedings of EMMCVPR, 2001. 被引量:1
  • 7Larsen E. S. , Mordohai P. , Pollefeys M. and Fuchs H. , Temporally consistent reconstruction from multiple video streams using enhanced belief propagation [ C ], Proceedings of ICCV, 2007. 被引量:1
  • 8黄贤武,朱莉,仲兴荣,王加俊.一种新的基于时空马尔可夫随机场的运动目标分割技术[J].电子与信息学报,2006,28(2):367-371. 被引量:10
  • 9B. K. Horn and B. Schunck, Determining optical flow [ J ], Artificial Intelligence, 1981 ,Vol. 1 7, No. 1 : 1 85-203. 被引量:1
  • 10Wollbom M, Mech R. Refined procedure for objective evaluation of video object segmentation algorithms [ R ], Doc. ISO/IEC JTC1/SC29/WGll M3448, March 1998. 被引量:1

二级参考文献11

  • 1王勇,吴立德.图象恢复和边缘提取的后验均值方法[J].电子学报,1994,22(2):70-75. 被引量:6
  • 2Kim Munchurl,Choi Jae Gark,Kim Daehee,et al..A VOP generation tool:Automatic segmentation of moving objects in image sequences based on spatiotemporal information[J].IEEE Trans.on Circuits and Systems for Video Technology,1999,9(8):1216-1226. 被引量:1
  • 3Fan Jianping,Yu Jun,Gen Fujita,et al..Spatiotemporal segmentation for compact video representation[J].Signal Processing:Image Communication,2001,16(6):553-566. 被引量:1
  • 4Meier T,Ngan K N.Automatic segmentation of moving objects for video object plane[J].IEEE Trans.on Circuits and Systems for Video Technology,1998,8(5):525-538. 被引量:1
  • 5Luthon F,Caplier A,Lievin M.Spatiotemporal MRF approach to video segmentation:application to motion detection and lip segmentation,Signal Processing,1999,76(1):61-80. 被引量:1
  • 6Park Sang Ho,Yun Dong,Lee Sang U K.Color image segmentation based on 3-D clustering:Morphological approach.Pattern Recognition,1998,31(8):1061-1076. 被引量:1
  • 7Zhuang X,IEEE Trans Image Processing,1996年,5卷,9期,1293页 被引量:1
  • 8Zhuang X,IEEE Trans Pattern Anal Machine Intell,1992年,14卷,1期,19页 被引量:1
  • 9Liu J Q,IEEE Trans Pattern Anal Machine Intell,1994年,16卷,7期,689页 被引量:1
  • 10詹劲峰,戚飞虎,赵雪春.运动目标和背景的自动分割(英文)[J].红外与毫米波学报,1999,18(5):343-350. 被引量:3

共引文献38

同被引文献35

  • 1李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 2Li Y, Li J. Segmentation of SAR intensity imagery with a voronoi tessellation, bayesian inference, and reversible jump MCMC al- gorithm [ J ]. IEEE Transactions on C, eoseienee and Remote Sensing, 2010, 48(4) : 1872-1881. 被引量:1
  • 3Kato Z. Sementation of color images via reversible jump MCMC sampling [ J ]. Journal Image and Vision Computing, 2006, 26(3) : 361-371. 被引量:1
  • 4Corder G W, Foreman D L. Nonparametric Statistics for Non- Statisticians: A Step-by-Step Approach [ M ]. Hoboken: John Wiley & Sons, 2009 : 26-28. 被引量:1
  • 5Geman D, Geman S, Graffigne C. Boundary detection by con- strained optimization [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 609-628. 被引量:1
  • 6Lucarini V. Symmetry-break in voronoi tessellations [ J ]. Sym- metry, 2009, 1(1): 21-54. 被引量:1
  • 7Zhao Q H, Li Y, Liu Z G. SAR image segmentation using voronoi tessellation and bayesian inference applied to dark dpot feature extraction [J]. Sensors, 2013, 13(11) : 14484-14499. 被引量:1
  • 8Metropolis N, Rosenbluth A W, Rosenbluth M N. Equations of state calculations by fast computing machines [ J ]. Journal of Chemical Physics, 1953, 21(6) : 1087-1092. 被引量:1
  • 9Hastings W K. Monte carlo sampling methods using markov chains and their application [J]. Biometrika, 1970, 57 ( 1 ) : 97-109. 被引量:1
  • 10Geman D, Geman S. Stochastic relaxation, gibbs distributions and the bayesian restoration of images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6 (6) : 721- 741. 被引量:1

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部