期刊文献+

非对称非正交快速联合对角化算法 被引量:2

Non-symmetrical Non-orthogonal Fast Joint Diagonalization Algorithm
下载PDF
导出
摘要 针对非对称联合对角化算法收敛速度慢以及有可能收敛到奇异解的问题,首先提出一种基于最小二乘的非对称代价函数,该代价函数在最小二乘标准的基础上增加了使对角化矩阵非奇异的约束项,以保证算法不会收敛到奇异解.然后利用一种循环最小化技术来优化提出的代价函数,得到一种非对称非正交快速联合对角化算法.算法的性能分析证明,该算法不仅全局渐近收敛,而且具有不变性.左右对角化矩阵的关系也证明了非对称联合对角化的一般性.实验仿真表明,与原非对称联合对角化算法相比,提出的算法收敛速度更快,而且可以显著降低干扰信号比. To overcome the drawbacks of slow convergence speed and possible singular solutions of existing non-symmetrical joint diagonalization algorithm,we first present a least-squares criteria based non-symmetrical cost function for joint diagonalization,in which a penalty term is added to the classical least-squares criteria to avoid singular solutions.Then a non-symmetrical non-orthogonal fast joint diagonalization algorithm is developed by using a cyclic minimizer technique.The performance analysis shows that the present algorithm globally asymptotically converges to the stable stationary point and has the invariance property.The relation between left and right diagonalization matrices is also investigated to show that the non-symmetrical joint diagonalization is a more general form for joint diagonalization prob-lem.The simulation results show that the proposed algorithm converges faster than the original algorithm,and that the interference to signal ratio(ISR) is also significantly improved.
出处 《自动化学报》 EI CSCD 北大核心 2010年第6期829-836,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60775013)资助~~
关键词 联合对角化 盲信源分离 最小二乘标准 循环最小化 非奇异 Joint diagonalization blind source separation least-squares criteria cyclic minimizer nonsingular
  • 相关文献

参考文献2

二级参考文献12

  • 1Cardoso J F, Souloumiac A. Blind Beamforming for Non-Gaussian Signals[J]. IEE Proceedings-F, 1993, 140 (6): 362-370. 被引量:1
  • 2Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A Blind Source Separation Technique Using Second-order Statistics [J]. IEEE Trans on Signal Processing,1997, 45(2):434-444. 被引量:1
  • 3Yeredor A. Non-Orthogonal Joint Diagonalization in the Least-Squares Sense with Application in Blind Source Separation [J]. IEEE Trans on Signal Processing, 2002, 50(7): 1 545-1 553. 被引量:1
  • 4Feng D Z, Zhang X D, Bao Z. An Efficient Multistage Decomposition Approach for Independent Components[J]. Signal Processing, 2003, 83(1):181-197. 被引量:1
  • 5Ziehe A, Laskov P, Nolte G. A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Applieation to Blind Souree Separation[J]. Journal of Maehine Learning Researeh, 2004, 5(1): 777-800. 被引量:1
  • 6Tong L, Liu R W, Soon V C, et al. Indeterminacy and Identifiability of Blind Identification[J]. IEEE Trans on Circuits and Systems, 1991, 38(5) : 499-509. 被引量:1
  • 7Golub G H, Loan C F V. Matrix Computation[M]. Second Edition. Baltimore: Johns Hopkins Univ Press, 1989: 70-75. 被引量:1
  • 8LaSalle J P. The Stability of Dynamical Systems[M]. First Edition. Philadelphia: IAM Press,1976: 5-11. 被引量:1
  • 9Parra L, Alvino C V. Convolutive Blind Separation of Non-Stationary Source[J]. IEEE Trans on Speech and Audio Processing, 2000, 8(3): 320-327. 被引量:1
  • 10Amari S, Chichocki A. Adaptive Blind Signal Processing-neural Network Approaches[J]. Proceedings of IEEE, 1998, 86(10) : 2026-2048. 被引量:1

共引文献21

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部