量子群的Grobner-Shirshov基与Ringel-Hall代数
Grobner-Shirshov Basis of Quantum Groups and Ringel-Hall Algebra
摘要
用Ringel-Hall代数构造了A3型量子群正部分的一个Grbner-Shirshov基,这种方法将为有限维代数表示论给出一个新的应用空间.
In this paper we will construct A Grbner-Shirshov basis for the positive part of quantum group of type A3 is contrasted by applying Ringel-Hall algebra.This approach will provide a new application for the representation theory of finite algebra.
出处
《天中学刊》
2010年第2期8-10,共3页
Journal of Tianzhong
参考文献10
-
1Buchberger B.An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal[D].Ph.D.Thesis,University of Innsbruck,1965. 被引量:1
-
2Bergman G M.The diamond lemma for ring theory[J].Adv.Math.,1978,29:178-218. 被引量:1
-
3Shirshov A I.Some algorithmic problems for Liealgebra s[J].Siberian Math.J.,1962,3:292-296. 被引量:1
-
4Bokut L A.Imbeddings into simple associative algebras[J].Algebra and Logic,1976,15:117-142. 被引量:1
-
5Bokut L A,Malcolmson P.Groebner-Shirshov basis for quantum enveloping algebras[J].Israel J.Math,1996,96:97-113. 被引量:1
-
6Ringel C M.PBW-bases of quantum groups[J].J.reine angew.Math.,1996,470:51-88. 被引量:1
-
7Ringel C M.Hall algebras and quantum groups[J].Invent.math.,1990,101:583-592. 被引量:1
-
8Drinfel'd V G.Hopf algebras and the quantum Yang-Baxter equation[J].Doklady Akademii Nauk SSSR,1985,283(5):1060-1064. 被引量:1
-
9Jimbo M.A q-difference analogue of U(G) and the Yang-Baxter equation[J].Letters in Mathematical Physics,1985(1):63-69. 被引量:1
-
10Rosso M.Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra[J].Comm.Math.Phys.,1988,117:581-593. 被引量:1