期刊文献+

运动矩形薄膜的非线性振动分析 被引量:7

Nonlinear Vibration Analysis of a Moving Rectangular Membrane
下载PDF
导出
摘要 推导了运动矩形薄膜以挠度函数和内力函数表示的Von Kárman方程,对四边固支矩形运动薄膜的非线性振动特性进行了分析。首先对边界条件齐次化后的Von Kárman方程采用Bubnov-Galerkin法将时间与空间变量分离,其次对关于空间变量的偏微分方程边值问题采用DQ法求解,得到了关于时间变量的常微分方程,求得了运动薄膜非线性振动基频的表达式,最后讨论了运动薄膜的运动速度、张力比、长宽比、振动初值等对薄膜非线性振动基频和振动状态的影响。 The Von Kárman equations expressed by the deflection function and the internal force function of moving rectangular membrane are derived,and the nonlinear vibration behaviors of a moving rectangular membrane with four fixed edges is analyzed.First,for the Von Kárman equations whose boundary condations have been homogenized,the time and spatial variables are sparated by Bubnov-Galerkin method.Then,the new boundary value problems of partial differential equations are solved by DQ method,and the nonlinear ordinary differential equation about time variable is obtained.After that,the nonlinear vibrational fundamental frequency expression of the membrane is given.Finally,The effects of the moving speed,tension ratio,aspect ratio and vibrational initial value of moving rectangular membrane on the nonlinear vibration fundamental frequency and vibrational state are discussed.
出处 《机械科学与技术》 CSCD 北大核心 2010年第6期768-771,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 西安理工大学度校科学研究计划项目 西安理工大学博士启动金项目资助
关键词 运动矩形薄膜 非线性振动 Bubnov-Galerkin法 DQ法 moving rectangular membrane nonlinear vibration Bubnov-Galerkin method DQ method
  • 相关文献

参考文献12

  • 1Mochensturm E M, Perkins N C, Ulsoy A G. Stability and limit cycles of parametrically excited, axially moving strings [ J ]. Journal of Vibration and Acoustics, 1996,118 ( 3 ) :346 - 351. 被引量:1
  • 2Moon J, Wickert JA. Non-linear vibration of power transmission belts[ J]. Journal of Sound and Vibration, 1997,200(4). 被引量:1
  • 3Zhang L, Zu J W. One-to-one auto-parametric resonance in serpentine belt drive system [ J ]. Journal of Sound and Vibration, 2000,232(4) :783 -806. 被引量:1
  • 4Chung J, Han C S, Yi K. Vibration of an axially moving string with geometric non-linearity and translating acceleration [ J ]. Journal of Sound and Vibration, 2001,240(4) :733 -746. 被引量:1
  • 5吴俊,陈立群.轴向变速运动弦线的非线性振动的稳态响应及其稳定性[J].应用数学和力学,2004,25(9):917-926. 被引量:12
  • 6Mazumdar J. A review of approximate methods for determining the vibrational modes of membranes[J]. The Shock and Vibration Digest, 1984,16(10) :9 -15. 被引量:1
  • 7Laura P A A, Rossi R E, Gutierrez R H. Fundamental frequency of non-homoguneous rectangular membranes [ J ]. Journal of Sound and Vibration, 1997,204(2) :373 - 376. 被引量:1
  • 8Shin C H, Wonsuk Kim, Jintai Chung. Free in-plane vibration of an axially moving membrane[ J]. Journal of Sound and Vibration, 2004,272(1-2) :137 - 154. 被引量:1
  • 9Shin C H, Chung J T, Wonsuk Kim. Dynamic characteristics of the out-of-plane vibration for an axially moving membrane [ J ]. Journal of Sound and Vibration, 2005,286(4-5). 被引量:1
  • 10Shin C H, Chung J T, Hong Hee Yoo. Dynamic responses of the in-plane and out-of-plane vibrations for an axially moving membrane[J]. Journal of Sound and Vibration, 2006,297(3-5). 被引量:1

二级参考文献16

  • 1[2]Pakdemirli M, Batan H. Dynamic stability of a constantly accelerating strip [J].J Sound Vibrations,1993,168(2):371-378. 被引量:1
  • 2[3]Pakdemirli M, Ulsoy A G, Ceranoglu A. Transverse vibration of an axially accelerating string[J].J Sound Vibrations,1994,169(2):179-196. 被引量:1
  • 3[4]Pakdemirli M, Ulsoy A G. Stability analysis of an axially accelerating string[J].J Sound Vibrations,1997,203(5):815-832. 被引量:1
  • 4[5]Ozkaya E, Pakdenirli M. Lie group theory and analytical solutions for the axially accelerating string problem[J].J Sound Vibrations,2000,230(4):729-742. 被引量:1
  • 5[6]Zhang L, Zu J W.Non-linear vibrations of viscoelastic moving belts-part 1: free vibration analysis[J].J Sound Vibrations,1998,216(1):75-91. 被引量:1
  • 6[7]Zhang L, Zu J W.Non-linear vibrations of viscoelastic moving belts-part 2: forced vibration analysis[J].J Sound Vibrations,1998,216(1):93-103. 被引量:1
  • 7[8]Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts-part 1: dynamic response[J].J Appl Mech,1999,66(2):396-402. 被引量:1
  • 8[9]Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts-part 2: stability analysis[J].J Appl Mech,1999,66(2):403-409. 被引量:1
  • 9[10]Wickert J A, Mote C D Jr. Classical vibration analysis of axially moving continua[J].J Appl Mech,1990,57(3):738-744. 被引量:1
  • 10Mazumdar J A. Review of approximate methods for determining the vibrational modes of membranes[J]. The Shock and Vibration Digest, 1975,7(1): 75-88. 被引量:1

共引文献19

同被引文献48

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部