期刊文献+

一种结合K-Means的层次化的搜索结果聚类方法

A hierarchical search results clustering method based on K-Means
下载PDF
导出
摘要 针对用户在搜索结果列表中寻找所需信息困难的问题,在分析了Web搜索结果的特点的基础上,提出了一种结合K-Means的层次化方法对搜索结果进行聚类,并通过向用户提供查询结果的类别标签分类显示结果,从而大大提高可浏览性。同时,在该方法的基础上设计并实现了一个搜索结果聚类原型系统,实验结果表明新方法是可行的。 Against the difficulties of users in the search results list,a hierarchical search results clustering method based on K-Means was proposed based on the analysis of the features of web search results.The browsability of the search results was greatly improved by providing users with category labels of search results for the classification display.Besides,a prototype clustering search results system was designed and implemented based on this method.The experiment results show that the new method is feasible.
作者 于洪 谌强
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2010年第3期355-359,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(60773113) 重庆市科委项目(CSTC 2009BB2082) 重庆市教委项目(KJ080510)~~
关键词 搜索结果聚类 层次化聚类 类标签 search results clustering hierarchical clustering category labels
  • 相关文献

参考文献8

  • 1张刚,刘悦,郭嘉丰,程学旗.一种层次化的检索结果聚类方法[J].计算机研究与发展,2008,45(3):542-547. 被引量:15
  • 2易高翔,胡和平.一种基于容错粗糙集的Web搜索结果聚类方法[J].计算机研究与发展,2006,43(2):275-280. 被引量:5
  • 3OSINSKI S, STEFANOWSKI J, WEISS D. Lingo :Search results clustering algorithm based on Singular Value Decomposition[ C]//KLOPOTEK M A, WIERZCHON S T, TROJANOWSKI K. International IIS. Poland: Springer, 2004 : 359-368. 被引量:1
  • 4ViViSimo. Vivisimo search engine [ EB/OL]. [ 2009-05- 10 ]. http ://www. vivisimo. com. 被引量:1
  • 5TAN P N,STEINBACH M,KUMAR V.数据挖掘导论[M].范明,范宏建,等译.北京:人民邮电出版社,2006. 被引量:18
  • 6李建超..网页在线聚类的研究与实现[D].上海交通大学,2007:
  • 7Google. Google API接口 [ EB/OL]. [ 2009-03-12 ]. http ://www. google. com/apis/. 被引量:1
  • 8ZENG H J, HE Q C, CHEN Z, et al. Learning to cluster web search results[C]//Proc of the 27th annual international ACM SIGIR Conf. on Research and development in IR. Sheffield, United Kingdom: ACM, 2004:210-217. 被引量:1

二级参考文献19

  • 1王志梅,张俊林,李秋山.Web检索结果快速聚类方法的研究与实现[J].计算机工程与设计,2004,25(12):2231-2233. 被引量:2
  • 2M. A. Hearst, J, O. Pedersen.Reexamining the cluster hypothesis:Scatter/gather on retrieval results.The 19th ACM Int'1 Conf.Research and Development in Information Retrieval,Zurich,Switzerland,1996. 被引量:1
  • 3O. Zamir, O. Etzioni. Grouper: A dynamic clustering interface to Web search results. Computer Networks, 1999, 31 ( 11-16):1361 - 1374. 被引量:1
  • 4S. Osinski. An algorithm for clustering of Web search result:[Master dissertation]. Poland: Poznan University of Technology,2003. 被引量:1
  • 5Ngo Chi Lang, A tolerance rough set approach to clustering Web search results: [ Master's dissertation ] . Poland: Warsaw University, 2003. 被引量:1
  • 6Jouni Jarvinen, Approximations and rough sets based on tolerances. RSCTC 2000, Banff, Canada, 2000. 被引量:1
  • 7Yiming Yang, Sedn Slattery, Rayid Ghani. A study of approaches to hypertext categorization. Journal of Intelligent Information Systems, 2002, 18(2-3) : 219-241. 被引量:1
  • 8Dharmendra S. Modha, W. Scott Spangler. Feature weighting in k-means clustering, Machine Learning, 2003, 52(3) : 217-237. 被引量:1
  • 9刘清.Rough集及Rough推理[M].北京:科学出版社,2003.209-212. 被引量:12
  • 10Hiroyuki Toda, Ryoji Kataoka. A search result clustering method using informatively named entities [C]. In: Proc of the ACM Workshop on Web Information and Data Management. New York: ACM Press, 2005. 81-86. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部