期刊文献+

关于有限次单群结构的研究

Research on the structure of finite sub-simple groups
下载PDF
导出
摘要 从群的正规子群的个数入手研究群的结构是一个好的方法.本文研究只有唯一一个非平凡正规子群的有限群,从可解性和非可解性两方面入手,分别指出了满足这两个性质的群的结构和性质,得到了若干结论.这些结论丰富了研究次单群这一领域的成果.本文还提出了内素数方幂阶群,初步研究了它的结构和性质,指出了它和次单群之间的关联. Starting from the number of the normal subgroups to research the structure of groups was a better method.This article discussed the groups with only one non-trivial normal subgroup,then discussed solved sub-simple groups and non-solved sub-simple groups.At last,it was defined that groups all of whose proper subgroups have prime power order,and the relation of this groups and sun-simple groups was pointed out.
作者 张科锋 高茜
出处 《重庆文理学院学报(自然科学版)》 2010年第3期12-14,18,共4页 Journal of Chongqing University of Arts and Sciences
关键词 特征单群 次单群 内素数方幂群 characteristically simple groups sub-simple groups minimal non-power of prime number groups
  • 相关文献

参考文献11

  • 1刘锐..有限次单群的结构研究[D].成都理工大学,2005:
  • 2张远达著..有限群构造[M].北京:科学出版社,1982:426.
  • 3徐明曜.有限群导引(第2版)[M].北京:科学出版社.2007:16-48. 被引量:1
  • 4熊全淹.近世代数[M].武汉:武汉大学出版社,2004:38-39. 被引量:11
  • 5Gorenstein D. Finite simple groups:an introduction to their classification [ M ]. New York Plenum Press, 1982: 218 - 307. 被引量:1
  • 6Huppert B. Endlieh gruppen Ⅰ[ M ]. Berlian Heidelberg New York : Springer - Verlag, 1979:618 - 753. 被引量:1
  • 7Huppert B, Blackburn N. Finite groups Ⅲ [ M ]. Berlian Heidelberg New York :Springer - Vedag, 1982:182 - 194. 被引量:1
  • 8Conway J H, Norton S P, Parker R A, Wilson R A. Atlas of finite groups [ M ], Oxford and New York : Ordord University Press(Clarendon). 1985:91 - 100. 被引量:1
  • 9Yang W, Zhang Z. Locally soluble infinite groups in which every element has prime power order[J]. Southeast Asian Bulletin of Mathematics, 2003 (26) :857 - 864. 被引量:1
  • 10陈重穆.内∑群.数学学报,1980,23(2):239-242. 被引量:3

二级参考文献8

  • 1Higman G. Finite groups in which every element has prime power order[J]. J London Math Soc,1957,32:335-342. 被引量:1
  • 2施武杰 杨文泽.A5的一个新刻划与有限质元群.西南师范大学学报,1984,8(1):36-40. 被引量:7
  • 3Shi Wujie, Deng Huiwen, Zhang Jian. Finite nonsolvable groups with few composite numbers in the set of element orders[J]. J Southwest China Normal University,2001,26(5):493-502. 被引量:1
  • 4Isaacs I M. Character theory of finite groups[M]. New York: Academic Press,1976,14-95. 被引量:1
  • 5Gorenstein D. Finite simple groups, an introduction to their classification[M]. New York, Plenum Press, 1982,18-307. 被引量:1
  • 6Huppert B. Endlich gruppen I [M]. Berlian Heidelberg New York: Springer-Verlag,1979,618-753. 被引量:1
  • 7Huppert B, Blackburn N. Finite groups Ⅲ [M]. Berlian Heidelberg New York:Springer-Verlag,1982,182-194. 被引量:1
  • 8Conway J H, Norton S P, Parker R A, Wilson R A. Atlas of finite groups[M]. Oxford and New York:Oxford University Press(Clarendon), 1985,1-100. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部