期刊文献+

基于最小生成树和TPS变换模型的图像拼接 被引量:2

Image mosaicking based on minimum spanning tree and TPS transformation model
下载PDF
导出
摘要 本文针对图像拼接方法中的特征点匹配和变换参数求解问题,提出了一种基于最小生成树和TPS变换模型的图像拼接算法。该算法在每次迭代过程中,利用最小生成树的Laplace矩阵获取待拼接图像中特征点的匹配关系,然后估算待拼接图像之间的TPS(thinplatespline)变换参数,再利用这些参数使特征点集相互逼近,最终获得匹配关系和精确的TPS变换参数,实现图像的拼接。实验结果验证了该算法的有效性。 Aiming at feature point matching and transformation parameter solution problems, an image mosaicking algorithm based on minimum spanning tree and TPS transformation model is presented. In each iteration, the algorithm uses Laplace matrices of the minimum spanning tree to obtain the feature point matching of the two images to be mosaicked. Then the TPS (Thin Plate Spline) transformation parameters of the two images to be mosaicked are estimated and used to make the feature point sets closer each other. Finally, the image matching and accurate TPS parameters are obtained, and the images are mosaicked. Experiment results demonstrate the effectiveness of the algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第5期1070-1075,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60772121) 安徽省自然科学基金(070412065) 安徽省教育厅自然科学研究项目(kj2008b024) 安徽省高校青年教师资助计划(2008jq1023) 安徽大学211工程学术创新团队资助项目
关键词 最小生成树 TPS变换 图像拼接 特征点匹配 LAPLACE矩阵 minimum spanning tree TPS transformation image mosaicking feature point matching Laplace matrix
  • 相关文献

参考文献15

  • 1LOEWKE K E, CAMARILLO D B, JOBST C A, et al.Real-time image mosaicing for medical applications [ J]. Stud Health Technol Inform, 2007,125 (2) :304-309. 被引量:1
  • 2苗立刚.视频监控中的图像拼接与合成算法研究[J].仪器仪表学报,2009,30(4):857-861. 被引量:33
  • 3HANXW, ZHAO HY, YANL, etal. An approach of fast mosaic for serial remote sensing images from UAV [ C ]. Fourth International Conference on Fuzzy Systems and Knowledge Discovery , HaiKou, China, 2007 (4) : 11-15. 被引量:1
  • 4KRAMER P, HADAR O, BENOIS-PINEAU J, et al. Super-resolution mosaicing from MPEG compressed video [ J]. Image Communication, 2007,22(10) :845-865. 被引量:1
  • 5SCOTT G L, LONGUET-HIGGINS H C. An algorithm for associating the features of two images [ C ]. Proc. Royal Soc. London, 1991, 244 : 21-26. 被引量:1
  • 6SHAPIRO L S, BRADY J. Feature-based correspondence : An eigenvector approach[ J]. Image and Vision Computing, 1992, 10:283-288. 被引量:1
  • 7ROBLES-KELLY A, HANCOCK E R. Graph edit distance from spectral seriation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (3) :365-378. 被引量:1
  • 8CHOONSUK OH, YOUNG KEE RYU. Study on the center of rotation method based on minimum spanning tree matching algorithm for fingerprint recognition [ J]. Optical Engineering, 2004, 43 (4) 822-829. 被引量:1
  • 9TANG J, LIANG D, WANG N, et al. A laplacian spectral method for stereo correspondence[ J ]. Pattern Recognition Letters, 2007, 28(12), 1391-1399. 被引量:1
  • 10严蔚敏,吴伟民.数据结构[M].北京:清华大学出版社,2006. 被引量:14

二级参考文献46

  • 1蔡铮,汪源源,王威琪.一种改进的基于形变方法的图像拼接算法[J].仪器仪表学报,2006,27(z1):721-723. 被引量:3
  • 2曹晓光,徐琳,郁文霞.基于角点检测的高精度点匹配算法[J].仪器仪表学报,2006,27(z2):1269-1271. 被引量:13
  • 3HSU S,SAWHNEY H S,KUMAR R.Automated mosaics via topology inference[J].IEEE Computer Graphics and Applications,2002,22(2):44-54. 被引量:1
  • 4SAWHNEY H S,KUMAR R,GENDEL G,et al.VideoBrush:Experiences with consumer video mosaicing[A].Proceedings of the Workshop on Applications of Computer Vision[C].Princeton,1998:56-62. 被引量:1
  • 5BROWN M,LOWE D G.Recognising panoramas[A].Proceedings of the 9th International Conference on Computer Vision[C].Nice,France,2003:1218-1225. 被引量:1
  • 6STAUFFER C,GRIMSON W E L.Adaptive background mixture models for real-time tracking[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].1999,(2):246-252. 被引量:1
  • 7KADEWTRAKUPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[A].Proceedings of 2nd European Workshop on Advanced Video-Based Surveillance Systems[C].Kingston,UK,2001:149-158. 被引量:1
  • 8LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 9DAVIS J.Mosaics of scenes with moving objects[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Santa Barbara,1998:354-360. 被引量:1
  • 10PRATI A,SEGHEDONI F,CUCCHIARA R.Fast dynamic mosaicing and person following[A].Proceedings of International Conference on Pattern Recognition[C].Hong Kong,2006,(4):920-923. 被引量:1

共引文献170

同被引文献22

  • 1崔明明,闫镔,曹鸿涛,陈健,曾磊.基于全局二值特征描述子的三维CBCT图像快速匹配算法[J].计算机辅助设计与图形学学报,2015,27(4):666-673. 被引量:3
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3SCHMID M.A performance evaluation of local descriptors[J].IEEE Trans.On pattern Analysis and Machine intelligence,2005,27 (10):1615-1630. 被引量:1
  • 4EI RUBE I A,SHARRS.M A,SALEM A R.,et al.Image registration based on multi-scale SIFT for remote sensing images[J].Signal Processing and Communication Systems,3rd International Conference on 2009(9):28-30. 被引量:1
  • 5DA CUNHA A L,ZHOU J P,DO M N.The nonsubsampled eontourlet transform:theory,design,and applications[J].IEEE Trans.on Image Processing,2006,15(10):3089-3101. 被引量:1
  • 6DO M N VETIERLI M.The eontourlet transform:an efficient directional multi-resolution image representation[J].IEEE Trans.on Image Processing,2005,14(12):2091-2106. 被引量:1
  • 7SHENSA M J.The discrete wavelet transform:Wedding the à trons and Mallat algorithms[J].IEEE Trans.On Signal Processing.1992,40(10):2464-2482. 被引量:1
  • 8LOWE D G.Distinctive image features from scale-invariant keyPoints[J].International Journal on Computer Vision,2004,60(2):91-110. 被引量:1
  • 9STONE H S,WOLPOV R.Blind cross-spectral image registration using prefilering and fourier-based translation detection[J].IEEE Trans on,Geoscience and Remote Sensing,2002,40(3):637-650. 被引量:1
  • 10YU L,ZHANG D R,HOLDEN E J.A fast and fully antomatic registration approach based on point features for multi-source remote sensing images[J].Computers & Geosciences,2008,34(7):838-848. 被引量:1

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部