期刊文献+

基于SAS的多元统计方法实现芯片数据挖掘 被引量:5

Microarray data mining is achieved by multivariate statistics based on SAS
下载PDF
导出
摘要 利用SAS软件对GEO的一个肺癌芯片实验进行挖掘。采用非参数检验,判别分析和回归分析对该芯片实验中14个核受体的表达信息进行分析。结果表明,在0.05显著性水平下,ER1、VDR、RARα和RORα四个基因在腺癌和鳞癌表达具有统计学差异;RARβ在复发组和非复发组表达有差异。判别分析结果显示VDR和RORα表达量可以对病理类型进行预测,但是总误判率很高(0.2389);RARβ和PPARα对判别是否复发的总误判率更高(0.3457)。建立回归方程预测病理类型,入选模型的变量也是VDR和RORα,两者OR分别为0.126和4.452。可见,基于SAS的多元统计方法是芯片数据挖掘的一种潜在方法,一旦芯片实验标准化,利用SAS对不同芯片实验数据整合分析的结论将有益于推动假说形成。 Multivariate statistics using SAS is applied to mine a dataset from GEO. Expression data of fourteen nuclear receptors in a lung cancer mieroarray experiment is analyzed by non - parameter test, diseriminant analysis and regression analysis. As a result, ER1, VDR, RARer and RORα is differentially expressed between adenoeareinoma and squamous cell carcinoma under signifieanee of 0.05 ; RARβ is differentially expressed between recurrent and non - recurrent cancer ; diseriminant analysis shows VDR and RORα together can predict pathotype, and RARβ and PPARα together can discriminate recurrence ; the false - rate is 0. 2389 and 0.3457, respectively. Logistic regression is established to predict pathotype and variables included are also VDR and RORα, with OR at 0. 126 and 4. 452, respectively. Therefore, multivariate statistics based on SAS is a potential way to mine mieroarray data and conclusions based on SAS integration of different mieroarray experiments might be helpful for establishing hypothesis once mieroarray experiments can be standardized.
出处 《生物信息学》 2010年第2期147-149,共3页 Chinese Journal of Bioinformatics
基金 北京市教委科研基金资助(2005年度)
关键词 数据挖掘 芯片 SAS Data mining Microarray SAS
  • 相关文献

参考文献8

  • 1薛富波等编..SAS 8.2统计应用教程[M].北京:兵器工业出版社;北京希望电子出版社,2004:517.
  • 2Jares P.DNA microarray applications in functional genomics[J].Ultrastruct Pathol,2006,30:209-19. 被引量:1
  • 3Armstrong N.J.,van de Wiel M.A.Microarray data analysis:from hypotheses to conclusions using gene expression data[J].Cell Oncol,2004,26:279-90. 被引量:1
  • 4Mangelsdorf D J,Thummel C,Beato M,et al.The nuclear receptor superfamily:the second decade[J].Cell,1995,83:835-9. 被引量:1
  • 5Butte A.The use and analysis of microarray data[J].Nat Rev Drug Discov,2002,1:951-60. 被引量:1
  • 6Quackenbush J.Microarray data normalization and transformation[J].Nat Genet,2002,32 (Suppl):496-501. 被引量:1
  • 7Stoeckert C.J.,Causton Jr.,H.C.,Ball C.A.Microarray databases:standards and ontologies[J].Nat Genet,2002,32 (Suppl):469-73. 被引量:1
  • 8Salit M.Standards in gene expression microarray experiments[J].Methods Enzymol,2006,411:63-78. 被引量:1

同被引文献81

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部