期刊文献+

基于LS-SVM的天然气管网负荷组合预测

Combination Method of Natural Gas Pipeline Network Load Forecasting Based on Least Squares Support Vector Machines
下载PDF
导出
摘要 针对现有组合预测模型,基于经验风险最小化原则,克服预测精度受组合模型限制的缺点,提出一种基于最小二乘支持向量机(LS-SVM)的天然气管网负荷组合预测模型,并与AR模型、BP神经网络模型、GM(1,1)模型以及最优权重组合模型进行了比较,得出基于最小二乘支持向量机的天然气管网负荷组合预测模型能够得到更高的预测精确度,可为天然气管网的安全运行以及优化调度提供决策支持的结论。 In light of the existing combined prediction model based on the experience of risk minimization and of the forecast accuracy of the model by the combination of restrictions,a natural gas pipe network load forecasting model based on the least squares support vector machines(LS-SVM)is proposed and compared with the AR model,BP neural network model,GM(1,1)model as well as the top priority recombination model.Least squares support vector machines based on the natural gas pipeline network load forecasting model portfolio will provide a higher forecast accuracy for the safe operation of the pipeline network optimization as well as credible support for the theory.
出处 《管道技术与设备》 CAS 2010年第3期14-16,33,共4页 Pipeline Technique and Equipment
关键词 天然气 管网 负荷 组合预测 最小二乘支持向量机 natural gas pipeline network load forecast LS-SVM
  • 相关文献

参考文献8

二级参考文献22

共引文献2305

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部