期刊文献+

EMD和Cohen类结合抑制交叉项的时-频分析方法 被引量:5

Time-Frequency Presentation Using Empirical Mode Decomposition Combined with Cohen Class to Suppress Crossterms
下载PDF
导出
摘要 为抑制单独使用Cohen类进行时-频变换时出现的交叉项,利用经验模态分解法将信号从频域上分离为若干个内禀模态函数之和,将分解后的信号分别进行Cohen类分布的时-频变换,得到信号的时-频分布.对3种不同类型的仿真信号进行计算,并将其时-频分布与直接对信号作Wigner-Ville分布、Cohen类时-频分布(以广义指数核为例)进行比较.结果表明,此方法能够抑制由二次分布所产生的交叉项,得到的结果更加接近理想时-频分布. To suppress the crossterm interference in the Cohen class quadratic time-frequency distribution,a method based on empirical mode decomposition(EMD) and Cohen class distribution was proposed.In this method,the time-domain signal is first decomposed into a sum of multiple intrinsic mode functions(IMFs) in frequency domain using EMD.Then,the Cohen class distributions of the IMFs are calculated to obtain the sum of all the Cohen class distributions.The time-frequency distributions of three typical simulation signals were calculated by the proposed method,and compared with their Wigner-Ville distribution and Cohen class distribution using generalized exponential kernel.The results show that the proposed method can effectively suppress the crossterms in the quadratic time-frequency distributions,and can produce a more desired time-frequency distribution.
作者 宁静 朱肇昆
出处 《西南交通大学学报》 EI CSCD 北大核心 2010年第3期400-404,共5页 Journal of Southwest Jiaotong University
基金 教育部博士点基金新教师资助项目(200806141058) 西南交通大学青年教师科研起步项目资助(2007Q049)
关键词 Cohen类 EMD 交叉项 广义指数核 Cohen class empirical mode decomposition crossterms generalized exponential distribution
  • 相关文献

参考文献11

  • 1CHOI H I,WILLIAMS W J. Improved time-frequency representation of multicomponent signals using exponential kernels [ J ]. Signal Processing, 1989, 37(6) : 862-871. 被引量:1
  • 2JEONG J, WILLIANMS W J. A new formulation of generalized discrete time-frequency distribution [ C ]// Proc. of the 1991 International Conference on Acoustics, Speech, and Signal Processing-ICASSP 91. Piscataway: IEEE, 1991:3189-3192. 被引量:1
  • 3CUNNINGGHAM G S, WILLIAMS W J. High- resolution signal synthesis for time-frequency distribution [ C ] //Proc. of Acoustics, Speech, and Signal Processing. Minneapolis : IEEE, 1993 : 400-403. 被引量:1
  • 4初孟,邱天爽.时频分布中交叉项抑制的研究进展[J].世界科技研究与发展,2005,27(4):14-20. 被引量:10
  • 5STEVENSON N, MESBAH M, BOASHASH B. A sampling limit for the empirical mode decomposition [ C ] //Proc. of 8th International Symposium on Signal Processing and its Applications, ISSPA 2005. Sydney: IEEE, 2005: 647-65. 被引量:1
  • 6LI H, ZHENG H Q, TANG L W. Hilbert-Huang transform and its application in gear faults diagnosis [J]. Key Engineering Materials, 2005, 291-292: 655- 660. 被引量:1
  • 7RILLING G, FLANDRIN P. On the influence of sampling on the empirical mode decomposition [ C ] //2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006. Toulouse: IEEE, 2006(3) :Ⅲ444-Ⅲ447. 被引量:1
  • 8于德介,程军圣,杨宇著..机械故障诊断的Hibert-Huang变换方法[M].北京:科学出版社,2006:194.
  • 9王宏禹著..非平稳随机信号分析与处理[M].北京:国防工业出版社,1999:377.
  • 10NORDEN E H, ZHENG S, STEVEN R L. The empirical decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis [ C ] //Proc. of the Royal Society. London: [ s. n. ], 1998 : 903-995. 被引量:1

二级参考文献19

  • 1D.Gabor.Theory of commumication.J Inst Elec Eng,1946,93:429~457. 被引量:1
  • 2R.K.Potter,et al.Van Nostrand.New York,NY,1947. 被引量:1
  • 3J.Ville.Theorie et applications de la notion de signal analytique.Cables et Tranmmissions,1948,2A: 61~74. 被引量:1
  • 4L.Cohen.Time-frequency analysis.IEEE Signal Processing Magazine,1999,16(1): 22~28. 被引量:1
  • 5L.Cohen.Tmme-Frequency distributions-a review.IEEE Proceedings,1989,77(7): 941~981. 被引量:1
  • 6Chio H,Williams W J.Improved time-frequency representation of multi-component signals using exponential kernels [ J ].IEEE Transaction on ASSP,1989,37(6): 861-871. 被引量:1
  • 7M.Bianu,A.Isar.The reduction of interference terms in the timefrequency plane.Signals,Circuits and Systems,2003,vol.2:461~464. 被引量:1
  • 8F.Khandan,A.Ayatollahi.Performance region of center affine filter for eliminating of interference terms of discrete Wigner distribution.Image and Signal Processing and Analysis,2003.Vol.2:621~625. 被引量:1
  • 9LuFu-Sheng,Yang Cheng-Xu,Lin Pai-Ling.An improved Wigner distribution based algorithm for signal identification.Underwater Technology,2004,April: 39~45. 被引量:1
  • 10J.Chen.Time frequency-based blind source separation technique for elimination of cross-terms in Wigner distribution.Electronics Letters,2003,Vol.39,Issue 5,6:475~477. 被引量:1

共引文献9

同被引文献56

  • 1林建辉,陈建政.振动测试中冲击隔离滤波器特性研究[J].西南交通大学学报,1995,30(1):82-85. 被引量:1
  • 2于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007. 被引量:16
  • 3郑树彬.高速磁浮轨检信号的数字滤波方法研究[D].成都:西南交通大学,2007. 被引量:2
  • 4GHARTEMANI K, ALIRERA K Z. A nonlinear time frequen- cy analysis method [J]. IEEE Transactions on Signal Process- in_g, 2004,52 (6) : 1585-1595. 被引量:1
  • 5COHEN L. Time-frequency analysis [M]. New Jersey: Pren- tice-Hall, 1995. 被引量:1
  • 6LEONOWIZE Z, LOBOS T, REZMER J. Advanced spectrum estimation methods for signal analysis in power electronics [J]. IEEE Trans on Industrial Electronics, 2003,50 ( 3 ) : 514- 519. 被引量:1
  • 7Real J, Salzdor P, Montalban 1, et al. Determination of railvertical profile through inertial methods [ J 1- Proceedings of the institution of Mechanical Engineers, Part F: Journal of Rapid Transit,20l 1,225 ( 1 ) : 14 - 23. 被引量:1
  • 8Sunaga Y ,Takegami K. Use of Acceleration to Detect Track and Rail In'egularities[ C]. WCRR. TOKYO,1999. 被引量:1
  • 9Choi H I. Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels [ J ]. IEEE Trans. on Acoust. Speech. Signal Processing. 1989.35:862 - 871. 被引量:1
  • 10Jeong J. Willianms W J. A new formulation of generalized discrete time-frequency distribution [ C ]// Pro. of the 1991 International Conference on Acoustics. Speech. and Signal Processing-ICASSP 91. Toronto. Can. 1991. IEEE. Piscataway. NJ. United States, 1991 : 3189 - 3192. 被引量:1

引证文献5

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部