期刊文献+

使用交叉熵检测和分类网络异常流量 被引量:7

Using Cross Entropy to Detect and Classify Network Anomalous Traffic
下载PDF
导出
摘要 针对准确识别网络攻击行为的问题,提出了一种基于交叉熵的流量异常检测和分类方法.首先使用流头部特征属性和行为特征属性对DoS攻击、端口扫描和网络扫描等3种常见攻击进行描述,并使用交叉熵来度量各属性上流量的分布变化,建立各攻击的行为特征向量,然后使用指数加权滑动平均控制图方法对多种交叉熵指标进行异常检测得到检测异常向量,最后以检测异常向量和各行为特征向量的相似度来判别攻击类型.针对路由器中Netflow流量的实验结果表明,对于强度较小的攻击,相比香农熵度量法,交叉熵度量法的攻击分类正判率和精确率平均提高了13%和15%,正确率提高了13%. A traffic anomaly detection and classification method based on cross entropy is proposed to identify network attack behaviors accurately.Both features of traffic flow header and traffic behavior are used to characterize three types of common attacks,such as DoS attacks,port scans and network scans.The cross entropy is used to measure traffic distribution changes for each traffic feature,and a behavior vector for each attack type is built.Then exponentially weighted moving average control chart method is applied to multiple cross entropy indicators for anomaly detection,and an anomaly vector is generated.The similarity between the anomaly vector and each behavior vector is computed to classify attacks.Experimental results and comparisons with the Shannon entropy measurement on Netflow traffic in a router show that under relatively weaker attacks,the true positive rate,average precision and accuracy of the cross entropy measurement in attack classification rise by 13%,15%,and 13%,respectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第6期10-15,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60825202 60803079 60633020) 国家高技术研究发展计划资助项目(2008AA01Z131) 国家科技支撑计划资助项目(2006BAK11B02 2008BAH26B02 2009BAH51B00) 中国科学院复杂系统与智能科学重点实验室开放基金资助项目(20080101)
关键词 交叉熵 异常检测 指数加权滑动平均 攻击分类 cross entropy anomaly detection exponentially weighted moving average attack classification
  • 相关文献

参考文献7

  • 1陈光英,张千里,李星.基于SVM分类机的入侵检测系统[J].通信学报,2002,23(5):51-56. 被引量:40
  • 2KRISHAN K,JOSHIL R C,KULDIP S.A distributed approach using entropy to detect DDoS attacks in ISP domain[C] //Proceedings of International Conference on Signal Processing,Communications and Networking.Piscataway,NJ,USA:IEEE,2007:331-337. 被引量:1
  • 3ANUKOOL L,MARK C,CHRISTOPHE D.Mining Anomalies using traffic feature distributions[C] //Proceedings of Special Interest Group on Data Communication Conference.New York,USA:ACM,2005:217-228. 被引量:1
  • 4GEORGE N,VYAS S,DAVID G,et al.An empirical evaluation of entropy-based traffic anomaly detection[C] // Proceedings of Internet Measurement Conference.New York,USA.ACM,2008:151-156. 被引量:1
  • 5QIN Tao,GUAN Xiaohong,LI Wei,et al.Dynamic features measurement and analysis for large-scale networks[C] // Proceedings of International Conference on Communications.Piscataway,NJ,USA:IEEE,2008:212-216. 被引量:1
  • 6YAN Ruoyu,ZHENG Qinhua.Using renyi cross entropy to analyze traffic matrix and detect DDoS attacks[J].Information Technology Journal,2009,8 (8):1180-1188. 被引量:1
  • 7MONTGOMERY D C,MASTRANGELO C M.Some statistical process control methods for autocorrelated data[J].Journal of Quality Technology,1991,23(3):179-193. 被引量:1

二级参考文献1

  • 1张千里.CCERT的建议和入侵检测系统的研究[M].北京:清华大学,2000.. 被引量:1

共引文献39

同被引文献81

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部