期刊文献+

基于改进粒子滤波的静电目标跟踪算法

Electrostatic Target Tracking Algorithm Based on Improved Particle Filter
下载PDF
导出
摘要 针对静电探测的数学模型结构复杂、强非线性以及实验测量数据存在极大不确定性的特点和传统粒子滤波(PF)算法存在的缺陷,提出了一种改进的粒子滤波(UPF)算法。该算法以无迹卡尔曼滤波(UKF)算法生成替代分布并从中采样,理论分析与仿真结果均表明,UPF算法能够提高静电探测系统目标跟踪的稳定性和精确性,解决了传统PF算法中以转换先验密度函数作为替代分布所引发的各种问题,具有较高的实用价值和广泛的应用前景。 Against the complexity and nonlinear of Electrostatic target tracking, uncertainty of the experimental data and the shortcomings of the traditional particle filter (PF), an improved particle filter algorithm called un- scented particle filter (UPF) is proposed. This algorithm generates a proposal distribution by unscented Kalman filter (UKF) method and draws samples from it, the theoretical analysis and simulation results demonstrate that the UPF algorithm improves stability and accuracy of tracking, and solves the various problems caused by PF which uses transition prior density function as the proposal distribution. The UPF has high practical value and broad application prospect.
作者 李耀明 付巍
出处 《探测与控制学报》 CSCD 北大核心 2010年第2期64-67,72,共5页 Journal of Detection & Control
基金 山西省青年自然科学基金项目资助(2009021022-2)
关键词 静电探测 无迹粒子滤波 目标跟踪 electrostatic detection unscented particle filter tracking
  • 相关文献

参考文献10

  • 1代方震,崔占忠,李明,崔忠伟.电极扫描式静电探测系统对空中目标定位方法研究[J].兵工学报,2003,24(4):479-483. 被引量:4
  • 2代方震.基于电极扫描原理的被动静电探测技术研究[D].北京:北京理工大学机电学院,2004. 被引量:1
  • 3Gordon N,Salmond D.Novel approach to nonlinear/nongaussian bayesian state estimation[J].Proc Inst Elect Eng F(S0956-375X),1993,140:107-113. 被引量:1
  • 4Fredrik Gustafsson,Fredrik Gunnarsson.Particle Filters for Positioning,Navigation,and Tracking[J].IEEE Transactions On Signal Processing (S1053-587X),2002,50(2):425-437. 被引量:1
  • 5陈曦.[D].北京:北京理工大学,2005. 被引量:3
  • 6汲清波,冯驰,吕晓凤.UKF、PF与UPF跟踪性能的比较[J].计算机工程与应用,2008,44(32):60-63. 被引量:10
  • 7韩崇昭..多源信息融合[M].北京:清华大学出版社,2006:488.
  • 8Merwe V D,Doucet R A.The unscented particle filter,advances in neural information processing systems[M].MIT,2000. 被引量:1
  • 9Liu J,Chen R.Sequential Monte Carlo Methods for Dynamic Systems[J].Journal of the American Statistical Association,1998,1 032-1 044. 被引量:1
  • 10Xiaohong Sheng.Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network[C]//Information Processing in Sensor Networks,2005:181-188. 被引量:1

二级参考文献7

  • 1范典华.粒子滤波[J].中山大学研究生学刊(自然科学与医学版),2005,26(2):22-32. 被引量:11
  • 2Ristic B.Suboptimal nonlinear filters,beyond the Kalman filter:Particle filters for tracking applications[M].[S.l.]:Artech House,2004. 被引量:1
  • 3Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings- F, 1993,140(2) : 107-111. 被引量:1
  • 4Djuri'c P M,Kotecha J H,Zhang Jiangqui,et al.Particle filtering[J]. IEEE Signal Processing,2003,20(5) : 19-38. 被引量:1
  • 5van der Merwe R,Doucet A.The unscented particle filter,advances in neural information processing systems[M].[S.l.]: MIT,2000. 被引量:1
  • 6Arulampalam M S,Maskell S,Gordon N J,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50(2):174-188. 被引量:1
  • 7代方震,崔占忠,贾永红,王伟.电极扫描式被动静电探测方法研究[J].探测与控制学报,2003,25(B03):19-21. 被引量:4

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部