期刊文献+

基于改进的PSO算法的PID控制在VAV空调系统末端的应用 被引量:6

Improve Particle Swarm Optimization Algorithm PID Control Applied at the End of VAV Air-Conditioning System Based on PSO(DPSO-CF)
下载PDF
导出
摘要 目的研究变风量空调系统温度-风量PID控制器的整定方法,利用改进粒子群算法的特点设计一种稳定、高效的自适应控制器.方法以PSO-CF(带收缩因子的PSO)PID控制方法的整定结果作为参考,在PSO-CF算法中用一个差分向量扰乱粒子的认知能力,再根据粒子群的演化规则自动完成最优控制.结果采用DPSO-CF(扰乱认知能力的带收缩因子的粒子群)PID自适应控制器时,系统的调节时间约为PSO-CF粒子群PID控制方法的30%,超调量减少了约75%.当系统加入扰动时,相比带收缩因子的PSO,扰乱认知能力的带收缩因子的粒子群PID自适应控制器的调节时间少,超调量小,系统控制品质得到了较大的改善.结论改进的算法不仅具有良好的鲁棒性,而且还有良好的收敛性.采用上述自适应控制器后,整个系统体现了良好的动态性能及较强的鲁棒性. Aiming at studying the tuning method of the temperature of VAV air-conditioning system-airflow PID controller,we used the characteristics of improved particle swarm optimization to design a more stable and efficient adaptive controller.Taking setting value results of PSO-CF(PSO with a shrinkage factor)PID control method as reference,the researchers used a vector differential cognitive ability to disrupt the particle in the PSO-CF algorithm,to auto-complete optimal control based on the evolution rules of particle swarm.The results reached that,with the DPSO-CF(disrupt cognitive PSO with a shrinkage factor) PID adaptive controller,the systematical adjustment time was about 30% of PID control method with PSO-CF particle swarm,and the overshoot decreasing by about 75%.When adding the disturbance to the system,compared with a shrinkage factor PSO,PID adaptive controller of disrupting cognitive PSO with a shrinkage factor cost less time,small overshoot,and systematic quality control had been improved significantly as well.The simu-lation results show the improved algorithm not only had good robustness,but also good convergence.Adopting the above adaptive controller,the entire system reflected good dynamic performance and robustness.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2010年第3期592-598,共7页 Journal of Shenyang Jianzhu University:Natural Science
基金 住房和城乡建设部科研项目(2007-KP-29)
关键词 粒子群算法 收缩因子 认知能力 鲁棒性 PSO constriction factor cognitive robustness
  • 相关文献

参考文献11

二级参考文献16

  • 1霍小平,黄春瑜,叶大法,杨国荣,王继伟.变风量空调系统设计与工程实践系列讲座——第七讲 变风量空调系统实施要点与关键环节[J].暖通空调,2004,34(B11):1-7. 被引量:2
  • 2西安冶金建筑学院 同济大学.热工测量与自动调节[M].北京:中国建筑工业出版社,1983.. 被引量:11
  • 3Carrier Corp. Tuner_rev2.doc[Z]. 1998. 被引量:1
  • 4Carrier Corp. Application data - single duct air terminal zone controller[Z]. 2001. 被引量:1
  • 5Shi Y, Eberhart R C.Fuzzy adaptive particle swarm optimization [C].Proc Congress on Evolutionary Computation,2001. 被引量:1
  • 6Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments[C].Las Vegas Nevada USA:Proceedings of the International Conference on Artificial Intelligence,2000: 429-434. 被引量:1
  • 7Jaco F Schutte,Albert A Groenwold.A study of global optimization using particle swarms[J]. Journal of Global Optimization,2005,31:93-108. 被引量:1
  • 8Shi Y, Eberhart R C.Empirical study of particle swarm optimization[C].Angeline P J, Michalewicz Z, Schoenauer M, et al.Proceedings of the Congress of Evolutionary Computation.Washington DC,USA:IEEE Press, 1999:1945-1950. 被引量:1
  • 9Clerc M.The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C].Angeline P J,Michalewicz Z,Schoenauer M, et al.Proceedings of the Congress of Evolutionary Computation. Washington DC, USA: IEEE Press, 1999: 1951-1957. 被引量:1
  • 10Rui Mendes,James Kennedy, Jose Neves.The full informed particle swarm: simpler, maybe better[J].IEEE Transaction on Evolutionary Computation,2004,8(3 ):204-210. 被引量:1

共引文献55

同被引文献37

  • 1刘秀荣,王超.北方某工程VAV空调系统简介及控制要点分析[J].中国水运(下半月),2010,10(7). 被引量:2
  • 2马富军,张益华.浅谈VAV空调系统控制中的几个问题[J].制冷空调与电力机械,2005,26(6):68-69. 被引量:5
  • 3荣剑文.VAV空调系统的几个控制策略[J].制冷空调与电力机械,2007,28(4):19-22. 被引量:5
  • 4Liu X,Dexter'A. Fault-tolerant supervisory control of VAV air-conditioning systems[J].Energy and Buildings,2001,(04):379-389. 被引量:1
  • 5Gao J,Sun Y,Wen J. An experimental study of energy consumption and thermal comfort for electric and hydronic reheats[J].Energy and Buildings,2005,(37):203-214. 被引量:1
  • 6David V,Sanchez A. Searching for a solution to the automatic RBF network design problem[J].Neural Computation,2002.147-170. 被引量:1
  • 7Liu J G. Electromagnetic speed regulation technology of shearer[J].World Journal of Engineering,2004,(01):214-222. 被引量:1
  • 8Song Q,Hu W J. Robust neural network controller for variable air flow volume system[J].Control Theory and Applications,2003,(02):112-118. 被引量:1
  • 9Widodo A,Yang B S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors[J].Expert Systems with Applications,2007,(01):241-250.doi:10.1016/j.eswa.2006.04.020. 被引量:1
  • 10Syed Mahmud Husain.Robust neural network controller for variable airflow volume system[M]新加坡:南洋理工大学,2002. 被引量:1

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部