摘要
直线加速器中的几何因子g是电荷束团的尺寸和管道半径的函数。并依赖于电荷束团的电荷密度分布。采用有限圆柱空间电荷模型,针对KapchinskijVladimirskij(K-V)分布、水袋(WB)、抛物线(PA)分布和高斯(GA)分布,分别求得其表达式;通过数值计算。
The geometry factor, g,plays an important role in the beam dynamics. It is, in general, a
function of the size of the bunched beam and of the tube radius. The geometry factor also
depends on the charge density distribution of the bunched beam in linac. Using the model of the
cylindrical space charge in linac, we derived the formulae of the geometry factor for different
density distributions, such as Kapchinskij Vladimirskij(K V) distribution, waterbag(WB)
distribution, parabolic(PA) distribution and Gaussian(GA) distribution. Finally, the variation of the
geometry factor with the density distributions of the bunched beam in linac are also shown by
means of the numerical studies.
出处
《核科学与工程》
CSCD
北大核心
1999年第1期76-79,共4页
Nuclear Science and Engineering
基金
国家自然科学基金
核工业基金