期刊文献+

基于K-均值聚类和约简最小二乘支持向量回归机的推力估计器设计 被引量:14

Thrust estimator design based on K-means clustering and reduced least squares support vector regression
原文传递
导出
摘要 提出了一种基K-均值聚类和约简最小二乘支持向量回归机的推力估计器设计方法.首先用K-均值聚类法将全包线范围内的数据进行聚类,然后在每一个类当中,用迭代约简最小二乘支持向量回归机设计一个子推力估计器.在用迭代约简最小二乘支持向量回归机设计子推力估计器的过程中,为了使计算数值更稳定,用Cholesky分解代替原来的迭代方法.最后仿真实验表明,此推力估计器能满足直接推力控制的需要,并和其它的方案比较起来,该方案存在一定的优势. In this paper,a design scheme for thrust estimator was proposed based on K-means clustering and reduced least squares support vector regression. Firstly,the K-means clustering algorithm was utilized to cluster the data in the full flight envelope,and the,a sub-estimator was designed in each cluster using the recursive reduced least squares support vector regression (RRLSSVR). In the process of designing the sub-estimator with RRLSSVR,the Cholesky factorization was utilized to replace the original iteration method for achieving higher numerical stability. Finally,the simulation experiments show that the thrust estimator can satisfy the requirement of direct thrust control for aeroengines,and as compared with other scheme for thrust estimator,the proposed scheme in this paper is also superior.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第5期1177-1183,共7页 Journal of Aerospace Power
基金 国家自然科学基金(50576033)
关键词 支持向量机 最小二乘 K-均值聚类 直接推力控制 support vector machine least squares K-means clustering direct thrust control
  • 相关文献

参考文献13

  • 1Gastineau Z, Happawana G. Robust model-based control for jet engines[R]. AIAA 98-3752, 1998. 被引量:1
  • 2Maggiore M,Ordonez R, Passino K M, et al. Estimator design in let engine applications[J]. Engineering Applications of Artificial Intelligence, 2003, 16(7-8):579 593. 被引量:1
  • 3Vapnik V N. The nature of statistical theory[M].New York : Springer-Verlag, 1995. 被引量:1
  • 4Cristiannini N,Shawe Taylor J. An introduction to support vector maehines[M]. Cambridge, UK :Cambridge University Press, 2000. 被引量:1
  • 5Suykens J A K,Vandewalle J. Least squares support vector machine classifiers[J~. Neural Process Letter, 1999,9 (3) : 293-300. 被引量:1
  • 6Suykens J A K,De Brabanter J,Lukas L,et al. Weighted least squares support vector machines: robustness and sparse approximation[J]. Neurocomputing,2002,48(1-4): 85-105. 被引量:1
  • 7Jiao L,Bo L, Wang L. Fast sparse approximalion for least squares support veclor maehine[J]. IEEE Transactions on Neural Networks, 2007,18 (3) : 685-697. 被引量:1
  • 8赵永平,孙健国.基于线性无关度的稀疏最小二乘支持向量回归机[J].中国图象图形学报,2009,14(6):1136-1140. 被引量:1
  • 9赵永平,孙健国.一种快速稀疏最小二乘支持向量回归机[J].控制与决策,2008,23(12):1347-1352. 被引量:12
  • 10ZHAO Yongping, SUN Jianguo. Recursive reduced least squares support vector regression[J]. Pattern Recognition, 2009,42(5) 837-842. 被引量:1

二级参考文献51

  • 1陈爱军,宋执环,李平.基于矢量基学习的最小二乘支持向量机建模[J].控制理论与应用,2007,24(1):1-5. 被引量:21
  • 2Zeng X Y, Chen X W. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE Trans on Neural Networks, 2005, 16(6):1541-1546. 被引量:1
  • 3Jiao L C, Bo L F, Wang L. Fast sparse approximation for least squares support vector machine[J]. IEEE Trans on Neural Networks, 2007, 18(3): 685-697. 被引量:1
  • 4Zhao Y, Keong K C. Fast leave-one-out evaluation and improvement on inference for LS-SVMs[C]. Proc of the 17th Int Conf on Pattern Recognition. Cambridge: IEEE, 2004: 494-497. 被引量:1
  • 5An S J, Liu W Q, Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[J]. Pattern Recognition, 2007, 40(8):2154-2162. 被引量:1
  • 6Murphu P M, Aha D W. UCI repository of machine learning database [Z]. http://www.ics. uei. edu/-mlearn/MLRepository.html. 被引量:1
  • 7Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 8Meng Z M, Peng L F, Zhou G G, et al. A multiclassification method of temporal data based on support vector machine[C]. Proc of LNAI. Berlin:Springer-Verlag, 2007: 240-249. 被引量:1
  • 9Huang C L, Chen M C, Wang C J. Credit scoring with a data mining approach based on support vector machines[J]. Expert Systems with Application, 2007,33(4): 847-856. 被引量:1
  • 10Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3):293-300. 被引量:1

共引文献27

同被引文献109

引证文献14

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部