V-disparity Based UGV Obstacle Detection in Rough Outdoor Terrain
被引量:7
V-disparity Based UGV Obstacle Detection in Rough Outdoor Terrain
出处
《自动化学报》
EI
CSCD
北大核心
2010年第5期667-673,共7页
Acta Automatica Sinica
基金
Supported by National Natural Science Foundation of China(60835004 60871078)
关键词
UGV
3D图像
图像处理
MGD
Main ground disparity (MGD)
V-disparity image
obstacle detection
unmanned ground vehicle (UGV)
outdoor unstructured environment
参考文献19
-
1Desouza G N, Kak A C. Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 237-267. 被引量:1
-
2Pomerleau D. Neural Network Vision for Robot Driving. Massachusetts: MIT Press, 1995. 被引量:1
-
3Coombs D, Herman M, Hong T H, Nashman M. Real-time obstacle avoidance using central flow divergence and peripheral flow. IEEE Transactions on Robotics and Automation, 1998, 14(1): 49-59. 被引量:1
-
4Ulrich I, Nourbakhsh I. Appearance-based obstacle detection with monocular color vision. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence. Austin, USA: AAAI Press, 2000. 866-871. 被引量:1
-
5Saxena A, Chung S H, Ng A Y. 3-D depth reconstruction from a single still image. International Journal of Computer Vision, 2008, 76(1): 53-69. 被引量:1
-
6Klarquist W N, Geisler W S. Maximum likelihood depth from defocus for active vision. In: Proceedings of the International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE, 1995. 374-379. 被引量:1
-
7Rajagopalan A N, Chaudhuri S, Mudenagudi U. Depth estimation and image restoration using defocused stereo pairs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1521-1525. 被引量:1
-
8Bellutta P, Manduchi R, Matthies L, Owens K, Rankin A. Terrain perception for DEMO III. In: Proceedings of IEEE Conference on Intelligent Vehicles Symposium. Dearborn, USA: IEEE, 2000. 3-8. 被引量:1
-
9Rankin A, Huertas A, Matthies L. Evaluation of stereo vision obstacle detection algorithms for off-road autonomous navigation. AUVSI Unmanned Systems North America. Pasadena, USA: Jet Propulsion Laboratory, 2005. 被引量:1
-
10Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J. Stanley, the robot that won the DARPA grand challenge. Journal of Robotics Systems, 2006, 23(9): 661-692. 被引量:1
同被引文献94
-
1HADSELL R, SERMANET P, ERKAN A N, et al. Online learning for offroad robots: using spatial label propagation to learn long-range traversability[ C ]//Proc of Robotics : Science and Systems. 2007. 被引量:1
-
2HALATCI I, BROOKS C A, IAGNEMMA K. Terrain classification and classifier fusion for planetary exploration rovers [ C ]//Proc of IEEE Aerospace Conference. 2007 : 1-11. 被引量:1
-
3ODEDRA S. Using unmanned ground vehicle performance measurements as a unique method of terrain classification [ C ]//Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011 : 286-291. 被引量:1
-
4VERNAZA P, TASKAR B, LEE D D. Online, self-supervised terrain classification via discriminatively trained submodular Markov ran-dom fields[ C]//Proc of IEEE International Conference on Robotics and Automation. 2008 : 2750-2757. 被引量:1
-
5VARMA M, ZISSERMAN A. Texture classification: are filter banks necessary? [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003 : 691-698. 被引量:1
-
6SOUNDRAPANDIAN K K, MATHUR P. Traversability assessment of terrain for autonomous robot navigation [ C ]//Proc of International Multiconference of Engineers and Computer Science. 2010: 1286-1289. 被引量:1
-
7KHAN Y N, KOMMA P, BOHLMANN K, et al. Grid-based visual terrain classification for outdoor robots using local features [ C ]//Proc of IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems. 2011 : 16-22. 被引量:1
-
8OJALA T, PIETIKAINEN M, MAENPAA T. Muhiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Zrans on Pattern Analysis and Machine InteUigence,2002,24(7) : 971-987. 被引量:1
-
9TAN Xiao-yang, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[ J ]. IEEE Trans on Image Processing ,2010,19 (6) : 1635-1650. 被引量:1
-
10AKHLOUFI M A, BENDADA A. Locally adaptive texture features for muhispectral face recognition [ C ]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 2010: 3308-3314. 被引量:1
引证文献7
-
1朱效洲,李宇波,卢惠民,张辉.基于视觉的移动机器人可通行区域识别研究综述[J].计算机应用研究,2012,29(6):2009-2013. 被引量:8
-
2汤一平,姜荣剑,林璐璐.基于主动式全景视觉的移动机器人障碍物检测[J].计算机科学,2015,42(3):284-288. 被引量:12
-
3张伟东,张伟,李振鹏,顾建军.基于视觉特征的大范围地形感知[J].机器人,2015,37(3):369-375. 被引量:2
-
4蔡云飞,石庭敏,唐振民.基于双多线激光雷达的非结构化环境负障碍感知技术[J].自动化学报,2018,44(3):569-576. 被引量:13
-
5Ziyi Liu,Siyu Yu,Nanning Zheng.A Co-Point Mapping-Based Approach to Drivable Area Detection for Self-Driving Cars[J].Engineering,2018,4(4):479-490. 被引量:5
-
6蒋志彪,王建,宋千,周智敏.凹障碍超宽带SAR图像特征分析[J].国防科技大学学报,2017,39(6):160-164. 被引量:2
-
7Lijian Yao,Dong Hu,Zidong Yang,Haibin Li,Mengbo Qian.Depth recovery for unstructured farmland road image using an improved SIFT algorithm[J].International Journal of Agricultural and Biological Engineering,2019,12(4):141-147. 被引量:3
二级引证文献45
-
1张伟东,张伟,李振鹏,顾建军.基于视觉特征的大范围地形感知[J].机器人,2015,37(3):369-375. 被引量:2
-
2杨磊,蔡纪源,任衍允,李俄德.一种基于深度信息的障碍物检测方法[J].计算机技术与发展,2015,25(8):43-47. 被引量:5
-
3杨磊,任衍允,蔡纪源.一种基于深度数据的高斯模型运动目标检测方法[J].计算机技术与发展,2015,25(9):27-30. 被引量:2
-
4汤一平,胡大卫,蔡盈梅,黄珂,姜荣剑.基于全景视觉的移动机器人的运动目标检测[J].计算机科学,2015,42(11):314-318. 被引量:4
-
5邢明,刘瑜,任佳,章思恩,胡轩.基于SIFT-SUSAN融合的草地障碍物识别算法[J].浙江理工大学学报(自然科学版),2016,35(3):427-432. 被引量:1
-
6李丽丽.机器人视觉中的障碍物优化识别方法研究[J].计算机仿真,2016,33(6):306-309. 被引量:6
-
7邵辉,叶贤成,孙祥云.液压挖掘机的两级平滑挖掘规划方法[J].华侨大学学报(自然科学版),2016,37(5):610-614. 被引量:3
-
8张勤,李岳炀,赵钦君.四足机器人野外导航关键技术研究进展[J].济南大学学报(自然科学版),2016,30(5):391-396. 被引量:1
-
9舒英利,寇磊,苑全德,皮玉珍.双超声波数据融合的两轮机器人平衡行进策略研究[J].自动化仪表,2017,38(2):36-40. 被引量:3
-
10张鹏,仇红娟.主动式传感器在电力系统中的安全检测研究[J].自动化与仪器仪表,2017(7):73-75. 被引量:1
-
1本刊编辑部.美军无人地面车辆技术能力不足及研究方向[J].国外坦克,2012(9):40-43.
-
2千里.UGV第二阶段演示实验计划[J].机器人情报,1992(4):19-19.
-
3王珍.无人驾驶地面车辆技术和系统[J].机器人情报,1992(4):13-17.
-
4搜狐视频走“自制+UGV”启动两岸微电影大赛[J].互联网天地,2012(6):64-64.
-
5刘晓佩,卢朝阳,李静,姜维.结合颜色和MGD特征及MRF模型的场景文本分割[J].光电子.激光,2014,25(9):1824-1829. 被引量:1
-
6段海滨,刘森琪.空中/地面机器人异构协同技术研究:现状和展望[J].中国科学:技术科学,2010,40(9):1029-1036. 被引量:5
-
7舒飞,袁一.无人地面车辆技术的发展[J].科学时代,2011(3):62-64.
-
8张海涛.基于Vericut的数控程序仿真技术研究[J].新技术新工艺,2011(1):26-29. 被引量:7
-
9阎岩,唐振民.UGV协同系统研究进展[J].计算机应用研究,2011,28(10):3623-3628. 被引量:5
-
10军用机器人扩展了人类的活动领域[J].工业设计,2013(1):47-51.