期刊文献+

V-disparity Based UGV Obstacle Detection in Rough Outdoor Terrain 被引量:7

V-disparity Based UGV Obstacle Detection in Rough Outdoor Terrain
下载PDF
导出
出处 《自动化学报》 EI CSCD 北大核心 2010年第5期667-673,共7页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of China(60835004 60871078)
关键词 UGV 3D图像 图像处理 MGD Main ground disparity (MGD) V-disparity image obstacle detection unmanned ground vehicle (UGV) outdoor unstructured environment
  • 相关文献

参考文献19

  • 1Desouza G N, Kak A C. Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2): 237-267. 被引量:1
  • 2Pomerleau D. Neural Network Vision for Robot Driving. Massachusetts: MIT Press, 1995. 被引量:1
  • 3Coombs D, Herman M, Hong T H, Nashman M. Real-time obstacle avoidance using central flow divergence and peripheral flow. IEEE Transactions on Robotics and Automation, 1998, 14(1): 49-59. 被引量:1
  • 4Ulrich I, Nourbakhsh I. Appearance-based obstacle detection with monocular color vision. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence. Austin, USA: AAAI Press, 2000. 866-871. 被引量:1
  • 5Saxena A, Chung S H, Ng A Y. 3-D depth reconstruction from a single still image. International Journal of Computer Vision, 2008, 76(1): 53-69. 被引量:1
  • 6Klarquist W N, Geisler W S. Maximum likelihood depth from defocus for active vision. In: Proceedings of the International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE, 1995. 374-379. 被引量:1
  • 7Rajagopalan A N, Chaudhuri S, Mudenagudi U. Depth estimation and image restoration using defocused stereo pairs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1521-1525. 被引量:1
  • 8Bellutta P, Manduchi R, Matthies L, Owens K, Rankin A. Terrain perception for DEMO III. In: Proceedings of IEEE Conference on Intelligent Vehicles Symposium. Dearborn, USA: IEEE, 2000. 3-8. 被引量:1
  • 9Rankin A, Huertas A, Matthies L. Evaluation of stereo vision obstacle detection algorithms for off-road autonomous navigation. AUVSI Unmanned Systems North America. Pasadena, USA: Jet Propulsion Laboratory, 2005. 被引量:1
  • 10Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J. Stanley, the robot that won the DARPA grand challenge. Journal of Robotics Systems, 2006, 23(9): 661-692. 被引量:1

同被引文献94

  • 1HADSELL R, SERMANET P, ERKAN A N, et al. Online learning for offroad robots: using spatial label propagation to learn long-range traversability[ C ]//Proc of Robotics : Science and Systems. 2007. 被引量:1
  • 2HALATCI I, BROOKS C A, IAGNEMMA K. Terrain classification and classifier fusion for planetary exploration rovers [ C ]//Proc of IEEE Aerospace Conference. 2007 : 1-11. 被引量:1
  • 3ODEDRA S. Using unmanned ground vehicle performance measurements as a unique method of terrain classification [ C ]//Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011 : 286-291. 被引量:1
  • 4VERNAZA P, TASKAR B, LEE D D. Online, self-supervised terrain classification via discriminatively trained submodular Markov ran-dom fields[ C]//Proc of IEEE International Conference on Robotics and Automation. 2008 : 2750-2757. 被引量:1
  • 5VARMA M, ZISSERMAN A. Texture classification: are filter banks necessary? [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003 : 691-698. 被引量:1
  • 6SOUNDRAPANDIAN K K, MATHUR P. Traversability assessment of terrain for autonomous robot navigation [ C ]//Proc of International Multiconference of Engineers and Computer Science. 2010: 1286-1289. 被引量:1
  • 7KHAN Y N, KOMMA P, BOHLMANN K, et al. Grid-based visual terrain classification for outdoor robots using local features [ C ]//Proc of IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems. 2011 : 16-22. 被引量:1
  • 8OJALA T, PIETIKAINEN M, MAENPAA T. Muhiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Zrans on Pattern Analysis and Machine InteUigence,2002,24(7) : 971-987. 被引量:1
  • 9TAN Xiao-yang, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[ J ]. IEEE Trans on Image Processing ,2010,19 (6) : 1635-1650. 被引量:1
  • 10AKHLOUFI M A, BENDADA A. Locally adaptive texture features for muhispectral face recognition [ C ]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 2010: 3308-3314. 被引量:1

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部