摘要
为了改善α稳定噪声环境中盲均衡器的性能,文章提出一种改进常数模盲均衡算法(MAEC-CMA)。对均衡器输入信号进行软限幅,并对原自适应误差受限常数模盲均衡算法(AECCMA)的误差信号进行非线性变换,有效地抑制了α稳定噪声的影响。采用2种水声信道,在高斯噪声与α稳定噪声的情况下对算法进行了计算机仿真。结果表明:在高斯噪声环境中,MAECCMA算法与AECCMA算法具有相似的性能,相对于常数模(CMA)算法和归一化最小平均绝对偏差(NLMAD)算法它具有较快的收敛速度;在α稳定噪声环境中,文中提出的MAECCMA算法性能优于其它3种算法。
Aim.The AECCMA algorithm proposed by S.Choi et al in Ref.5 is better in convergence than CMA algorithm in Gaussian noise.We now propose a modified AECCMA(MAECCMA) algorithm that can also suppress α-stable noise while retaining its good convergence in Gaussian noise.Section 1 of the full paper briefs α-stable noise.Section 2 briefs the normalized least mean absolute deviation(NLMAD) algorithm.Section 3 explains our MAECCMA algorithm;it discusses how to modify the AECCMA algorithm and then presents the details of modification in two steps:(1) adding to the software the capability of limiting the amplitude of the equalizer input,(2) transforming nonlinearly the error signals of the AECCMA algorithm to suppress the α-stable noise.Section 4 presents the computer simulation of our MAECCMA algorithm respectively in Gaussian noise and in α-stable noise,using two underwater acoustic channels.The simulation results,given in Figs.1 through 4,show preliminarily that:(1) the performance of our MAECCMA algorithm is almost the same as that of AECCMA algorithm in Gaussian noise;(2) both algorithms have faster convergence speed than the CMA algorithm and the NLMAD algorithm in Gaussian noise;(3) the performance of our MAECCMA algorithm is the best among the above four algorithms in α-stable noise;thus it can steadily suppress the residual inter-symbol interference caused by the multi-path effect of an underwater acoustic channel.
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2010年第2期202-206,共5页
Journal of Northwestern Polytechnical University
基金
全国优秀博士学位论文作者专项基金(200753)资助
关键词
α稳定噪声
水声信道
盲均衡
误差受限
常数模
underwater acoustics
algorithms
α-stable noise
blind equalization
modified adaptive error-constrained constant modulus algorithm(MAECCMA)