期刊文献+

抑制α稳定噪声的改进常数模盲均衡算法 被引量:7

Improving AECCMA(Adaptive Error-Constrained Constant Modulus Algorithm) for Blind Equalization to Make it Suitable in α-Stable Noise
下载PDF
导出
摘要 为了改善α稳定噪声环境中盲均衡器的性能,文章提出一种改进常数模盲均衡算法(MAEC-CMA)。对均衡器输入信号进行软限幅,并对原自适应误差受限常数模盲均衡算法(AECCMA)的误差信号进行非线性变换,有效地抑制了α稳定噪声的影响。采用2种水声信道,在高斯噪声与α稳定噪声的情况下对算法进行了计算机仿真。结果表明:在高斯噪声环境中,MAECCMA算法与AECCMA算法具有相似的性能,相对于常数模(CMA)算法和归一化最小平均绝对偏差(NLMAD)算法它具有较快的收敛速度;在α稳定噪声环境中,文中提出的MAECCMA算法性能优于其它3种算法。 Aim.The AECCMA algorithm proposed by S.Choi et al in Ref.5 is better in convergence than CMA algorithm in Gaussian noise.We now propose a modified AECCMA(MAECCMA) algorithm that can also suppress α-stable noise while retaining its good convergence in Gaussian noise.Section 1 of the full paper briefs α-stable noise.Section 2 briefs the normalized least mean absolute deviation(NLMAD) algorithm.Section 3 explains our MAECCMA algorithm;it discusses how to modify the AECCMA algorithm and then presents the details of modification in two steps:(1) adding to the software the capability of limiting the amplitude of the equalizer input,(2) transforming nonlinearly the error signals of the AECCMA algorithm to suppress the α-stable noise.Section 4 presents the computer simulation of our MAECCMA algorithm respectively in Gaussian noise and in α-stable noise,using two underwater acoustic channels.The simulation results,given in Figs.1 through 4,show preliminarily that:(1) the performance of our MAECCMA algorithm is almost the same as that of AECCMA algorithm in Gaussian noise;(2) both algorithms have faster convergence speed than the CMA algorithm and the NLMAD algorithm in Gaussian noise;(3) the performance of our MAECCMA algorithm is the best among the above four algorithms in α-stable noise;thus it can steadily suppress the residual inter-symbol interference caused by the multi-path effect of an underwater acoustic channel.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第2期202-206,共5页 Journal of Northwestern Polytechnical University
基金 全国优秀博士学位论文作者专项基金(200753)资助
关键词 α稳定噪声 水声信道 盲均衡 误差受限 常数模 underwater acoustics algorithms α-stable noise blind equalization modified adaptive error-constrained constant modulus algorithm(MAECCMA)
  • 相关文献

参考文献7

  • 1Pillai S S,Harisankar M.Simulated Performance of a DS Spread Spectrum System in Impulsive Atmospheric Noise.IEEE Trans on Electromagnetic Compatibility,1987,EMC-29,(1):80-82. 被引量:1
  • 2Bouvet M,Schwartz S C.Comparison of Adaptive and Robust Receivers for Signal Detection in Ambient Underwater Noise.IEEE Trans on Acoust Speech Signal Process,1989,37:621-626. 被引量:1
  • 3Zha D F,Qiu T S.Underwater Sources Location in Non-Gaussian Impulsive Noise Environments.Digital Signal Process,2006,16 (2):149-163. 被引量:1
  • 4Arikan O,Belge M,Cetin A E,Erzin E.Adaptive Filtering Approaches for Non-Gaussian Stable Processes.International Conference on Acoustics Speech and Signal Processing,1995,2:1400-1403. 被引量:1
  • 5Choi S,Lee T W,Hong D.Adaptive Error-Constrained Method for LMS Algorithms and Applications.Signal Processing,2005,85:1875-1897. 被引量:1
  • 6王峰..基于高阶统计量的水声信道盲均衡理论与算法[D].西北工业大学,2003:
  • 7Zielinski A,Hoon Y,Wu X L.Performance Analysis of Digital Acoustic Communication in a Shallow Water Channel.IEEE Journal of Oceanic Engineering,1995,20(4):293-298. 被引量:1

同被引文献51

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部