期刊文献+

基于文化遗传算法求解柔性作业车间调度问题 被引量:14

Solving flexible Job Shop scheduling problem based on cultural genetic algorithm
下载PDF
导出
摘要 在分析柔性作业车间调度问题特性的基础上,提出了一种采用主群体空间和信仰空间的双层进化结构的调度算法。该算法采用优良调度方案的知识信息构成信仰空间;提出一种二维矩阵的集成编码;基于工序顺序编码和基于机器分配编码的两种交叉和变异算子在主群体空间进行传统的遗传操作;通过具有自学习特点的相似性选择算子,使子代更好地继承父代的优良特征。通过典型算例的计算实验,表明算法在计算效率和求解质量上均具有较好的效果。 Based on the analysis of the characteristics of Flexible Job Shop Scheduling(FJSP)problem,the double-layer evolution scheduling algorithm with frame population space and belief space to solve FJSP was proposed.This algorithm adopted useful knowledge of excellent scheduling schemes to form belief space.A two-dimensional matrix integrated coding was put forward.Traditional genetic operations were conducted in frame population space among two effective crossover operators and mutation operators,which were designed on the basis of the integration of machine assignment and operation sequence for the genetic algorithm.By selection operators with similar self-learning characteristics,son-generations inherited excellent characteristics from parent-generations.Experimental results indicated that the proposed algorithm outperformed the current approaches in computation efficiency and solution quality.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2010年第4期861-866,共6页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(70771008 70371057)~~
关键词 柔性作业车间调度 文化算法 遗传算法 选择算子 flexible Job Shop scheduling cultural algorithm genetic algorithm selection operator
  • 相关文献

参考文献14

  • 1张超勇,饶运清,李培根,邵新宇.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124. 被引量:105
  • 2BLAZEWICZ J,FINKE R,HAUPT G,et al.New trends in machine scheduling[J].European Journal of Operational Research,1988,37(3):303-317. 被引量:1
  • 3MONTAZERI M,VAN WASSENHOVE L N V.Analyses of scheduling rules for an FMS[J].International Journal of Production Research,1990,28(4):785-802. 被引量:1
  • 4王凌,郑大钟.Meta-heuristic算法研究进展[J].控制与决策,2000,15(3):257-262. 被引量:22
  • 5REYNOLDS R G.An introduction to cultural algorithms[C]//Proceedings of the 3rd Annual Conference on Evolutionary Programming.River Edge,N.J.,USA:World Scientific Publishing,1994:131-139. 被引量:1
  • 6HO N B,TAY J C,LAI E M K.An effective architecture for learning and evolving flexible Job Shop schedules[J].European Journal of Operational Research,2007,179(2):316-333. 被引量:1
  • 7PINEDO M.Scheduling theory,algorithms,and systems[M].Upper Saddle River,N.J.USA:Prentice-Hall,2002:159. 被引量:1
  • 8KACEM I,HAMMADI S,BORNE P.Approach by localization and multi-obiective evolutionary optimization for flexible Job-Shop scheduling problems[J]IEEE Transactions on Systerns,Man and Cybernetics,2002,32(1)1-13. 被引量:1
  • 9CHEN H,IHLOW J,LEHMANN C.A genetic algorithm for flexible Job-Shop scheduling[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington,D.C.,USA:IEEE,1999:1120-1125. 被引量:1
  • 10KACEM I,HAMMADI S,BORNE P.Pareto-optimality approach for flexible Job-Shop scheduling problems;hybridization of evolutionary algorithms and fuzzy logic[J].Mathematics and Computers in Simulation,2002,60(3/5):245-276. 被引量:1

二级参考文献30

共引文献225

同被引文献186

引证文献14

二级引证文献499

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部