期刊文献+

时空数据库变体最近邻查询问题探讨

Survey on variant of nearest neighbor queries in spatio-temporal database
下载PDF
导出
摘要 最近邻查询在地理信息系统、智能交通系统、多媒体应用以及数据挖掘等领域有着广泛的应用,随着对最近邻查询问题研究的深入,其应用前景和发展空间将更为广阔。针对近几年时空数据库中提出的最近邻查询的多种变体查询问题进行了详细地介绍和分析,总结了解决这些变体最近邻查询问题的有效方法,最后对最近邻查询问题的发展方向进行了展望。 Nearest Neighbor(NN) queries are widely used in many applications such as geographic information system,intelligent transportation systems,multimedia applications and data mining.They are emerging as a more powerful and promising perspective with the indepth study of nearest neighbor queries.The variant of nearest neighbor queries in spatio-temporal database which proposed in recent years are introduced and analyzed in detail.The effect methods are concluded which can resolve these queries.And finally the future research directions about nearest neighbor queries are pointed out.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第14期12-16,19,共6页 Computer Engineering and Applications
基金 国家自然科学基金No.60673136 黑龙江省自然科学基金No.F200601~~
关键词 时空数据库 最近邻查询 变体最近邻查询 查询算法 spatio-temporal database nearest neighbor queries variant of nearest neighbor queries query algorithm
  • 相关文献

参考文献40

  • 1Roussopoulos N,Kelley S,Vincent F.Nearest neighbor queries[C]//Proc of the ACM SIGMOD International Conference on Managemerit of Data,San Jose,CA,1995:71-79. 被引量:1
  • 2Hjaltason G R,Samet H.Distance browsing in spatial databases[J].ACM Transactions on Database Systems,1999,24(2):265-318. 被引量:1
  • 3Kollios G,Gunopulos D,Tsotras V J.Nearest neighbor queries in a mobile environment[C]//Proc of the International Workshop on SpatioTemporal Database Management,Edinburgh,Scotland,1999:119-134. 被引量:1
  • 4Song Z,Roussopoulos N.K-nearest neighbor search for moving query point[C]//Proc of the 7th International Symposium on Spatial and Temporal Databases,Redondo Beach,California,USA,2001:79-96. 被引量:1
  • 5Tao Y,Papadias D,Shen Q.Continuons nearest neighbor search[C]//Proc of the 28th International Conference on Very Large Data Bases,Hong Kong,China,2002:287-298. 被引量:1
  • 6Tao Y,Papadias D.Time-parameterized queries in spatio-temporal databases[C]//Proc of the ACM SIGMOD International Conference on Management of Data,Madison,Wisconsin,USA,2002:334-345. 被引量:1
  • 7Raptopoulou K,Papadopoulos A N,Manolopoulos Y.Fast nearest neighbor query processing in moving object databases[J].Geolnformatica,2003,7(2):113-137. 被引量:1
  • 8刘永山,薄树奎,张强,郝忠孝.多对象的最近邻查询[J].计算机工程,2004,30(11):66-68. 被引量:8
  • 9Papadias D,Shen Q,Tao Y,et al.Group nearest neighbor queries[C]//Proc of the 20th International Conference on Data Engineering,Boston,USA,2004:301-312. 被引量:1
  • 10Li H,Lu H,Huang B,et al.Two ellipse-based pruning methods for group nearest neighbor queries[C]//Proe of the 13th Annual ACM International Workshop on Geographic Information Systems,Bermea,Germany,2005:192-199. 被引量:1

二级参考文献22

  • 1张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 2Chan E P F, Zhang N. Finding shortest paths in large network systems [C] //Proc of the 9th ACM Int Syrup on Advances in Geographic Information Systems. New York: ACM, 2001:160-166. 被引量:1
  • 3Hutchinson D, Maheshwari A, Zeh N. An external memory data structure for shortest path queries[J]. Discrete Applied Mathematics, 2003, 126 (1) : 55-82. 被引量:1
  • 4Sharifzadeh M, Kolahdouzan M, Shahabi C. The optimal sequenced route query[J]. The VLDB Journal, 2008, 17 (4) : 765-787. 被引量:1
  • 5Guttman A. R-trees: A dynamic Index structure for spatial searching [C] //Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 1984:47-57. 被引量:1
  • 6Li F, Chen D, Hadjieleftheriou M, et al. On trip planning queries in spatial databases [C]//Proe of the 9th Int Symp on Spatial and Temporal Databases. Berlin.. Springer, 2005: 273-290. 被引量:1
  • 7Ma X, Shekhar S, Xiong H, et al. Exploiting a page-level upper bound for multi-type nearest neighbor queries [C] // Proc of the 14th ACM Int Syrup on Advances in Geographic Information Systems. New York: ACM, 2006:179-186. 被引量:1
  • 8[1]Roussopoulos N, Kelley S, Vincent F. Nearest Neighbor Queries. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, 1995: 71-79 被引量:1
  • 9[3]Yu C, Ooi B C, Tan K L. Indexing the Distance: An Efficient Method to KNN Processing. VLDB, 2001 被引量:1
  • 10[4]Berchtold S, Ertl B, Keim D A. Fast Nearest Neighbor Search in High- dimensional Space. In: Proceedings of the 14th International Confer- ence on Data Engineering, 1998: 209-218 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部