期刊文献+

基于预测模式蚁群优化的传感网节能路由机制 被引量:10

The Prediction-Mode Routing Mechanism Based on ACO in WSN
下载PDF
导出
摘要 面向传感器网络中时间序列数据的时域关联性特征,针对网内数据流量不均衡分布模式所导致的传输能耗漏斗效应问题,提出了基于预测模式的能量感知数据路由机制。机制的设计结合了蚁群优化机理自适应网络状况动态性的优势和预测模型揭示数据流量变化规律的优势,通过将节点负载因子引入蚁群优化算法中启发式因子的构造和局部信息素更新规则的设计,赋予蚂蚁代理在路由解空间探索中预知网络局域能量状况的能力,提高了数据路由构建的自适应性和能量均衡性。实验表明,论文提出的面向预测模式的路由机制,通过引入蚁群优化机理和挖掘数据内涵的时域关联性,有效降低和均衡了数据路由能耗。 The paper proposes prediction-based energy-aware routing mechanism to solve the problems of energy waste and funnel effect,which are caused by imbalanced flow distribution mode,according to the characteristic of temporal correlation on time series data in wireless sensor networks(WSN).The design of routing mechanism combines the advantages of ACO principle,which is self-adaptive to dynamic network situation,and the advantages of prediction module,which reveals the law of data flow change.By introducing node-load-factor into both construction of heuristic factor and design of local pheromone updating rule,ant agents are endowed with perception ability of local energy status in WSN,the self-adaptability and energy-cost-balance of routing construction are finally improved.The experiment shows that the above energy-saving mechanism effectively reduces and balances the energy cost of data routing by mining the temporal associability and introducing ACO.
出处 《传感技术学报》 CAS CSCD 北大核心 2010年第5期701-707,共7页 Chinese Journal of Sensors and Actuators
基金 计算机软件新技术国家重点实验室资助(KFKT2009B18南京大学) 先进纺织材料与制备技术教育部重点实验室资助(2009008浙江理工大学) CAD&CG国家重点实验室资助(A0910浙江大学) 青年教师科研基金资助(YH0157127华东理工大学)
关键词 传感器网络 预测模式 蚁群优化 数据路由 节能机制 wireless sensor networks prediction mode ACO data routing energy-saving mechanism
  • 相关文献

参考文献4

二级参考文献46

  • 1蔺智挺,屈玉贵,翟羽佳,赵保华.一种高效覆盖的节点放置算法[J].中国科学技术大学学报,2005,35(3):411-416. 被引量:13
  • 2吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 3Kassabaldlsi,El-Sharkaw I M A, Marks R J. Swarm intelligence for routing in communication networks[J]. Global Telecommunications, 2001,6 (6) : 3613-3617 被引量:1
  • 4Schoonderwoerd R, Holland O, Brut EN J, et al. Ants for load balancing in telecommunication networks[R]. Bristol Hewlett Packard Lab, 1996 被引量:1
  • 5Gunes M, Sorges U, Bouazizi. IARA-the-ant-colony based routing algorithm for MANETs[C]// International Conference on Parallel Processing Workshops (ICPPW' 02). 2002:79-85 被引量:1
  • 6Baras J S, Mehta H A. Probabilistic emergent routing algorithm form mobile ad hoc networks[C]//Wiopt 03: Mobiling and Optimization in Mobile, Ad Hoc and Wireless Network. Sophia-Antipolice, France, March 2003 : 20-125 被引量:1
  • 7Shnayder V, Hempstead M, Chen B. Simulating the power consumption of large-scale sensor network application[C]//Proe, of SEN-SYS' 04. Baltimore, 2004 : 188-200 被引量:1
  • 8Dorigo M, Gambardella L M. Ant Colony System : Cooperative Learning Approach to the Traveling Salesman Problem [J ]. IEEE Transaction Evolutionary Computation, 1997,1 (1) : 53-66 被引量:1
  • 9[1]Akyildiz I F,Su W,Sankarasubramanian Y,Cayirci E,A Survey on Sensor Networks[J].IEEE Communications Magazine,2002,40(8):102-114. 被引量:1
  • 10[2]Akkaya K,Younis M,A Survey on Routing Protocols for Wireless Sensor Networks[J],Ad Hoc Networks.2005,3(3):325-349. 被引量:1

共引文献56

同被引文献86

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部