期刊文献+

轴向应变对双势垒结构共振隧穿的影响

The Influence of Axial Strain on Double-Barrier Resonant Tunneling
下载PDF
导出
摘要 首先介绍了共振隧穿理论和一种新效应——介观压阻效应,对AlxGa1-xAs/GaAl/AlxGa1-xAs共振隧穿双势垒结构的轴向施加压应变作了分析,然后计算了轴向应变对垒宽和垒高的影响,对透射系数和隧穿电流用Matlab作了仿真.发现压应变可以使隧穿电流线性增加,偏压不同电流增加的速率也不同,为设计共振隧穿器件提供了理论依据. This paper firstly introduced a new effect,meso-piezoresistive effect,analysed the strain on AlxGa1-xAs/GaAl/AlxGa1-xAs double-barrier resonant tunneling structure along the axis director; then computed the influence of the barrier width and height from the axial strain,used Matlab as tool simulate the transmission coefficient and tunneling electric current. Finally we find the strain can make the electric current increase linearly,the velocity of increase differ with different voltage. It offers a theory basis for devising resonant tunneling devices.
出处 《微电子学与计算机》 CSCD 北大核心 2010年第5期199-201,共3页 Microelectronics & Computer
基金 国家自然科学基金项目(60776062)
关键词 应变 共振隧穿 介观压阻效应 strain resonant tunneling meso-piezoresistive effect
  • 引文网络
  • 相关文献

参考文献7

二级参考文献16

  • 1孟锋,蔡理,李芹,任培林.单电子隧道结隧穿特性研究与仿真[J].微电子学与计算机,2005,22(11):90-92. 被引量:1
  • 2[1]WEN T D, ANASTASSAKIS E. Temperature dependence of strains and stresses in undercritical cubic superlattices and heterojunctions[J]. Physical Review B, 1996,53( 8):4741. 被引量:1
  • 3[2]KONTOS A G, ANASTASSAKIS E, HRYSANTHAKOPOULOS N C. Strain profiles in overcritical(001) ZnSe/GaAs heteroepitaxial layers[J]. J Applied Physics, 1999, 86(1):412. 被引量:1
  • 4[3]LU Y Q ,ZHU Y Y , CHEN Y F. Optical properties of an ionic-type phononic crystal[J]. Science, 1999, 284, 1822. 被引量:1
  • 5[4]WEN T D , XU L P, ANASTASSAKIS E. On the piezoelectric signals of multilayer systems[J].Phys Stat Sol (a), 2000, 177: 467. 被引量:1
  • 6[5]FUNATO M, FUJITA S, FUJITA S. Energy states in ZnSe-GaAs heterovalent quantum structures[J]. Phys Rev B,1999, 60(24): 16652. 被引量:1
  • 7[6]OMAE K, KAWAKAMI Y, FUJITA S. Effects of internal electric field and carrier density on transient absorption spectra in a thin GaN epilayer[J]. Phys Rev B,65,73308 被引量:1
  • 8[7]FAN W B, ZHAO X G. Coherent dynamics in one-dimensional multiband semiconductor superlattices driven by DCAC electric fields[J]. Physica B, 2001, 299: 147. 被引量:1
  • 9[8]TYC M H, SALEJDA W. Negative differential resistance in aperiodic semiconductor superlattices[J]. Physica A, 2002, 303: 493. 被引量:1
  • 10[9]SALEJDA W, SZYSZUK P. The Landauer conductance of generalized Fibonacci superlattices[J]. Physica A, 1998, 252: 547. 被引量:1

共引文献42

;
使用帮助 返回顶部