摘要
为了研究低温等离子体后处理系统对柴油机有害排放物的作用效果,设计了介质阻挡放电式低温等离子体反应器,采用一种独立于柴油机排气管之外的低温等离子体喷射系统,研究了在不同的低温等离子体气体喷射量及柴油机不同模拟排气温度下,NO的转化及影响因素。研究表明:在低温等离子体喷射系统作用下,NO主要转化为NO2,NOx总量变化不大;随着激励电压峰—峰值的增加,NO转化为NO2的转化率先上升后下降;对应于不同的柴油机排气量,低温等离子体气体喷射量存在一个最佳值,可使得NO转化为NO2的效率最高;高温不利于NO的转化。
In order to study the effect of non-thermal plasma after-treatment system on diesel harmful emissions, the dielectric barrier discharge (DBD) plasma reactor was designed. With the non-thermal plasma injection system that was located outside the exhaust pipe, the NO conversion and its influencing factors at different non-thermal plasma gas injection quantities and different simulated exhaust temperatures were studied. The results show that the injection system can't reduce the total amount of NOx in non-thermal plasma environment due to the conversion from NO to NO2. With the increase of peak-to-peak applied voltage, the NO conversion rate first rises and then falls. Corresponding with different displacements of simulated diesel engine, the optimal quantity of non-thermal plasma gas injection exists, which will lead to the maximum conversion rate of NO. In addition, the high temperature goes against the NO conversion.
出处
《车用发动机》
北大核心
2010年第2期56-59,共4页
Vehicle Engine
基金
国家自然科学基金资助项目(50776041)
江苏省自然科学基金资助项目(BK2008225)
关键词
低温等离子体
介质阻挡放电
柴油机
一氧化氮
转化
non thermal plasma
dielectric barrier discharge
diesel engine
NO
conversion