期刊文献+

多普勒雷达径向速度同化在淮河暴雨数值模拟中的应用 被引量:7

APPLICATION OF DOPPLER RADAR RADIAL VELOCITY ASSIMILATION TO NUMERICAL SIMULATION OF HEAVY RAINFALL IN THE HUAI RIVER
下载PDF
导出
摘要 针对2007年7月淮河流域的一次强降雨过程,利用WRF中尺度数值模式及其三维变分同化系统(WRF-3DVAR),开展了多普勒雷达径向速度的三维变分同化对暴雨过程模拟效果的影响研究。结果表明:WRF-3DVAR能够有效地同化多普勒雷达径向速度资料,同化后使得模式初始场出现了一定的调整,包含更详尽的中尺度特征信息,进而显著改善模式对大暴雨过程前12h降水的模拟效果。在高分辨率中尺度数值模式中有效地利用多普勒天气雷达资料,能较好地提高中尺度降雨预报。 In this paper,the WRF and WRF-3DVAR system is employed to study the influence of Doppler radar velocity 3DAR assimilation on the numerical simulation of a heavy rainfall process occurred in in Huai River in July 2007.The results show that radial velocity can be assimilated effectively by WRF-3DVAR.And the mesoscale characteristic of the initial field has been adjusted some.Moreover,for the rainfall simulation,assimilation experiment is better than those of non-assimilation,which is more close to the observed rainfall in the previous 12 h.
出处 《气象与减灾研究》 2010年第1期23-30,共8页 Meteorology and Disaster Reduction Research
基金 国家自然科学基金项目(编号:40605016)
关键词 暴雨 雷达径向速度 中尺度模式 三维变分同化 Heavy rainfall Doppler radar radial velocity Mesoscale model Three-dimensional variational assimilation.
  • 相关文献

参考文献6

二级参考文献39

  • 1Masafumi Kamachi, Tsurane Kuragano, Noriya Yoshioka, Jiang Zhu, and Francesco Uboldi Meteorological Research Institute, 1-1 Nagamine, Tsukubo 305-0052 Japan Japan Meteorological Agenry, 1-3-4 Otemachi, Tokyo 100-8122 Japan Institute of Atmospheric Physics.Assimilation of Satellite Altimetry into a Western North Pacific Operational Model[J].Advances in Atmospheric Sciences,2001,18(5):767-786. 被引量:1
  • 2陈起英,姚明明,王雨.国家气象中心新一代业务中期预报模式T213L31的主要特点[J].气象,2004,30(10):16-21. 被引量:27
  • 3黄小刚,费建芳,陆汉城.消去分析台风方法的对比研究[J].应用气象学报,2006,17(1):81-86. 被引量:18
  • 4Kasahara A, Balgovind R C, Katz t3. Use of satellite radiometric imagery data for improvement in the analysis of divergent wind in the tropics. Mon. Wea. Rev. , 1988, 116: 866~883. 被引量:1
  • 5Sun J, Crook N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅰ: Model development and simulated data experiments. J. Atmos. Sci. , 1997, 54:1642~1661. 被引量:1
  • 6Sun J, Crook N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅱ: Retrieval experiments of an observed Florida convective storm. J. Atznos. Sci., 1998, 55: 835~852. 被引量:1
  • 7Sun J, Crook N A. Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting,2001, 16:117~132. 被引量:1
  • 8Synder C, Zhang F. Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea.Rev., 2003, 131:1663~1677. 被引量:1
  • 9Zhang F, Synder C, Sun J. Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev. , 2004, 132:1238~1253. 被引量:1
  • 10Tong M, Xue M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSSE experiments. Mon. Wea. Rev. , 2005, 133:1789~1807. 被引量:1

共引文献253

同被引文献76

引证文献7

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部