期刊文献+

关于伪余式与子结式的矩阵计算

ON THE COMPUTATION OF PSEUDO-REMAINDERS AND SUBRESULTANTS
下载PDF
导出
摘要 提出了通过构造矩阵(矩阵元素为给定多项式组的系数)和Dodgson变换来计算(稀疏)伪余式和子结式的算法,给定两个一元多项式G,F,定义了G和F的行列式多项式序列,并用于计算G和F的子结式序列,同时给出了用Sylvester矩阵和混合Bezout矩阵构造子结式的统一描述,在Maple中将新给出的算法予以实现,并通过若干例子与已有的几种算法进行了比较,实验结果表明新算法相对于已有的算法更为高效. In this paper, alternative algorithms for computing (sparse) pseudo-remainders and subresultants by constructing matrices in terms of the coefficients of given polynomials are presented. Tools in linear algebra such as Dodgson's transformations and minor expansion method are used. A variant of Dodgson's method is given to compute pseudo-remainders. The concept of determinant polynomial sequence (DPS) associated to given polynomials G,F is defined. It is shown that the way of constructing a DPS associated to G,F will lead to a uniform description of computing the subresultant sequence of G,F either by using the Sylvester matrix or the hybrid Bezout matrix.
作者 金萌
出处 《陕西科技大学学报(自然科学版)》 2010年第2期134-140,共7页 Journal of Shaanxi University of Science & Technology
关键词 伪余式 子结式 Dodgson变换 算法 MAPLE pseudo-remainder subresultant Dodgson's transformations algorithm Maple
  • 相关文献

参考文献9

  • 1Wang D.A generalized algorithm for computing characteristic sets[C].Computer Mathematics:Proceedings of the Fifth Asian Symposium (ASCM 2001),Matsuyama,Japan,2001. 被引量:1
  • 2Li Y B.An alternative algorithm for computing the pseudo-remainder of multivariate polynomials[J].Applied Mathematics and Computation,2006,173(1):484-492. 被引量:1
  • 3Ducos L.Optimizations of the subresultant algorithm[J].Journal of Pure and Applied Algebra.2000,145(2):149-163. 被引量:1
  • 4Abdeljaoued J,Diaz-Toca G M,Gonzalez-Vega L.Bézout matrices,subresultants and parameters[C].MACIS 2007,2007. 被引量:1
  • 5Hou X,Wang D.Subresultants with the Bézout matrix[C].In:Computer Mathematics-Proceedings of the Fourth Asian Symposium(ASCM 2000),Singapore New Jersey,2000:19-28. 被引量:1
  • 6Akritas A G,Akritas E K,Malaschonok G I.Matrix computation of subresultant polynomial remainder sequences in integral domains[J].Reliable Computing,1995,1(4):375-381. 被引量:1
  • 7Li Y B.A new approach for constructing subresultants[J].Applied Mathematics and Computation,2006,183(1):471-476. 被引量:1
  • 8Mishra B.Algorithmic Algebra[M].Springer,1993. 被引量:1
  • 9Von zur Gathen J,Lucking T.Subresultants revisited[J].Theoretical Computer Science,2003,297(1-3):199-239. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部