摘要
提出了通过构造矩阵(矩阵元素为给定多项式组的系数)和Dodgson变换来计算(稀疏)伪余式和子结式的算法,给定两个一元多项式G,F,定义了G和F的行列式多项式序列,并用于计算G和F的子结式序列,同时给出了用Sylvester矩阵和混合Bezout矩阵构造子结式的统一描述,在Maple中将新给出的算法予以实现,并通过若干例子与已有的几种算法进行了比较,实验结果表明新算法相对于已有的算法更为高效.
In this paper, alternative algorithms for computing (sparse) pseudo-remainders and subresultants by constructing matrices in terms of the coefficients of given polynomials are presented. Tools in linear algebra such as Dodgson's transformations and minor expansion method are used. A variant of Dodgson's method is given to compute pseudo-remainders. The concept of determinant polynomial sequence (DPS) associated to given polynomials G,F is defined. It is shown that the way of constructing a DPS associated to G,F will lead to a uniform description of computing the subresultant sequence of G,F either by using the Sylvester matrix or the hybrid Bezout matrix.
出处
《陕西科技大学学报(自然科学版)》
2010年第2期134-140,共7页
Journal of Shaanxi University of Science & Technology