期刊文献+

交通流时间序列的分形实证研究

Empirical Study on Fractal Characteristics of Traffic Flow Time Series
原文传递
导出
摘要 为了分析交通流在同步流、拥挤流、自由流状态下的分形特征,通过关联维刻画交通流的复杂性,通过Hurst指数研究交通流的长程相关性,通过记忆长度确定交通流的影响范围。对实测数据的计算结果表明,3种交通流都是分形的,且存在长程相关性,同步流的关联维小于拥挤流,拥挤流的关联维小于自由流,同步流和拥挤流的Hurst指数大于自由流,同步流的记忆长度大于拥挤流,拥挤流的记忆长度大于自由流,说明不同状态的交通流具有不同的分形特征。 In order to analyze the fractal characteristics of traffic flow under synchronization, jam and free conditions, the complexity of traffic flow was depicted by using correlation dimension, the long-term dependence of traffic flow was studied by using hurst index, and the influence area of traffic flow was delimited by using memory length. Computation result from real traffic data shows that ( 1 ) three kinds of traffic flow are fractal and exist long- term dependence; (2) correlation dimension of synchronization traffic flow is smaller than that of jam traffic flow, and correlation dimension of jam traffic flow is smaller than that of free traffic flow; (3) hurst indexes of synchronization traffic flow and jam traffic flow are larger than that of free traffic flow, memory length of synchronization traffic flow is longer than that of jam traffic flow, and memory length of jam traffic flow is longer than that of free traffic flow. It indicates that different kinds of traffic flow have different fractal characteristics.
作者 张勇 关伟
出处 《公路交通科技》 CAS CSCD 北大核心 2010年第5期100-103,116,共5页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金资助项目(60874078 60834001) 国家高技术研究发展计划(八六三计划)资助项目(2006AA11Z212) 国家重点基础研究发展计划(九七三计划)资助项目(2006CB705507) 高等学校博士学科点专项科研基金资助项目(20070004020) 新世纪优秀人才支持计划资助项目(NCET-08-0718)
关键词 交通工程 分形 时间序列分析 交通流 关联维 HURST指数 记忆长度 traffic engineering fractal time series analysis traffic flow correlation dimension Hurst index memory length
  • 相关文献

参考文献12

  • 1马军海著..复杂非线性系统的重构技术[M].天津:天津大学出版社,2005:243.
  • 2贺国光,马寿峰,冯蔚东.对交通流分形问题的初步研究[J].中国公路学报,2002,15(4):82-85. 被引量:33
  • 3裴玉龙,李洪萍.快速路交通流时间序列分形维数研究[J].公路交通科技,2006,23(2):115-119. 被引量:15
  • 4贺国光,冯蔚东.基于R/S分析研究交通流的长程相关性[J].系统工程学报,2004,19(2):166-169. 被引量:18
  • 5冯蔚东,陈剑,贺国光,刘豹.交通流中的分形研究[J].高技术通讯,2003,13(6):59-65. 被引量:9
  • 6SHANG P J,LU Y B,KAMAE S.Detecting Long-range Correlations of Traffic Time Series with Multifractal Detrended Fluctuation Analysis[J].Chaos,Solitons and Fractals,2008,36 (1):82-90. 被引量:1
  • 7LI X W,SHANG P J.Multifractal Classification of Road Traffic Flows[J].Chaos,Solitons and Fractals,2007,31 (5):1089-1094. 被引量:1
  • 8KERNER B S,KLENOV S L.Probabilistic Breakdown Phenomenon at On-ramp Bottlenecks in Three-phase Traffic Theory:Congestion Nucleation in Spatially Non-homogeneous Traffic[J].Physica A,2006,364 (15):473-492. 被引量:1
  • 9LAN L W,SHEU J B,HUANG Y S.Investigation of Temporal Freeway Traffic Patterns in Reconstructed State Spaces[J].Transportation Research Part C,2008,16 (1):116-136. 被引量:1
  • 10王海燕,卢山著..非线性时间序列分析及其应用[M].北京:科学出版社,2006:174.

二级参考文献42

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部