期刊文献+

额尔齐斯河-斋桑湖流域近20年来土地利用/土地覆被时空演变 被引量:13

Land use/land cover in Irtysh River-Zaysan Lake Basin over the past 20 years
下载PDF
导出
摘要 土地利用/土地覆被变化(LUCC)是影响生态环境和气候变化的主要驱动力之一,同时又是受其影响的结果。LUCC研究对于开展生态环境变化及气候变化的研究均具有重要的意义。针对目前境外LUCC研究中土地利用/覆被分类效率低的问题,探索一种适用于大数据量而又精度较高的分类方法。以额尔齐斯河国外部分-斋桑湖流域为研究区域,以1990年及2007年的Landsat TM/ETM+夏秋季影像以及DEM作为数据源,综合利用影像光谱、纹理信息参与到决策树构造中,进而利用决策树分类方法分别提取这两个时期的土地利用/覆被空间分布信息,最后分析两个时期的土地利用时空变化状况。实验结果表明:(1)光谱与空间纹理信息参与的决策树分类方法具有较高的分类精度;(2)两个时期的土地利用变化分析发现,近20年来该区域土地利用发生了较大的变化,耕地和灌木林地大面积减少,而低覆盖度草地和未利用地却显著增加。 The land use/land cover change is one of the main driving forces that affect the ecological environment and climate change, and also the result of its impact. LUCC research for the conduct of coo-environmental changes and climate change studies is of great significance. View of the current LUCC study,land use / cover classification accuracy and efficiency is low. On focus this issue, the paper tries to find a new classification method that can be used to the large scale data classification and also has a more classification precision. The paper takes Irtysh River -Zaysan Lake as the study area, and Landsat TM/ETM + image in year 1990 and 2007 as well as Aster DEM as data source, and comprehensive utilization of imaging spectroscopy, texture information to participate in the decision tree structure, and then take decision tree classification method to extract information of the two periods land use/land cover, and finally to analysis the LUCC information of this area. The results show as follows : ( 1 ) the combination of the image spectrum and texture increased the decision tree's classification precision dramatically; (2) The study area has a great change in land use in the past 20 years, especially the farmland and shrub decreased, while the grassland and unused land increased significantly.
出处 《干旱区地理》 CSCD 北大核心 2010年第2期189-195,共7页 Arid Land Geography
基金 中国科学院重要方向性项目(KZCX2-YW-307) 国家自然科学基金(40730633) 国家支撑计划项目(2008BAB42B09-3)
关键词 土地利用/土地覆被 决策树分类 额尔齐斯河 斋桑湖 LUCC .decision tree classification Irtysh River Zaysan Lake
  • 相关文献

参考文献10

  • 1王静著..土地资源遥感监测与评价方法[M].北京:科学出版社,2006:361.
  • 2申文明,王文杰,罗海江,张峰,刘小曼,熊文成.基于决策树分类技术的遥感影像分类方法研究[J].遥感技术与应用,2007,22(3):333-338. 被引量:107
  • 3Zbynek Hrkal, Alain Gadalia, Pierre Rigaudiere. Will the river Irtysh survive the year 2030? Impact of long-term unsuitable land use and water management of the upper stretch of the river catchment (North Kazakhstan)[J]. Environmental Geology,2006, 50 (5) : 717 -723. 被引量:1
  • 4Kostarev Sergey. Irtysh River Basin Information System (IRBIS) [ EB/OL]. Mexico 2006 4th World Water Forum,2006, http :// www. iowater, org/mexico/Session_5 - 13/IRBIS_1813. pdf. 被引量:1
  • 5RUSSIA - KAZAKHSTAN:Setting-up of the Irtysh River basin information system [ EB/OL ]. http ://www. eau - international - france, fr/article, php3 ? id_article = 134&idRubSel = 2&id_parent = &id_rubrique = 211 &id_pere =. 被引量:1
  • 6Homer Collin,Huang Chengquan,Yang Limin, et al. Development of a 2001 national land-cover database for the United States[J]. Phothogrammetric Engineering & Remote Sensing, 2004, 70 ( 7 ) : 829 - 840. 被引量:1
  • 7Homer Collin, Dewitz Jon, Fry Joyce, et al. Completion of the 2001 National Land Cover Database for the Conterminous United States [J]. Phothogrammetric Engineering & Remote Sensing, 2007, 73(4) :337 -341. 被引量:1
  • 8Ahlqvist Ola. Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity : a study of 1992 and 2001 US National Land Cover Database changes[J]. Remote Sensing of Environment, 2008, 112 (3) : 1226 - 1241. 被引量:1
  • 9Chander Gyanesh, Markham Brian L, Helder Dennis L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM + , and EO - 1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113 (5) : 893 -903. 被引量:1
  • 10Anderson James R, Hardy Ernest E, Roach John T, et al. A land use and land cover classification system for use with remote sensor data[R]. Geological Survey Professional Paper,1976, NO. 964. 被引量:1

二级参考文献17

  • 1DudaRO HartPE DavidG. Stork著 李宏东 姚天翔等译.模式分类[M].北京:机械工业出版社,2003.. 被引量:37
  • 2Friedl M A,Brodley C E,Strahler A H.Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):969-977. 被引量:1
  • 3McIver D K,Friedl M A.Estimating Pixel-scale Land Coverclassification Confidence Using Non-parametric Machine Learningmethods[J].IEEE Transactions on Geoscienceand Remote Sensing,2001,39:1959-1968. 被引量:1
  • 4McIver D K,Friedl M A.Using Prior Probabilities in Decision-tree Remotely Sensed Data[J].Remote Sensing of Environment,2002,81:253-261. 被引量:1
  • 5Zhan X,Sohlberg R A,Townshend J R G,et al.Detection of Land Cover Changes Using MODIS 250 m Data[J].Remote Sensing of Environment,2002,83:336-350. 被引量:1
  • 6Rogan J,Franklin J,Roberts D A.A Comparison of Methods for Monitoring Multitemporal Vegetation Change Using Thematic Mapper Imagery[J].Remote Sensing of Environment,2002,80(1):143-156. 被引量:1
  • 7Collin Homer.Development of A 2001 National Land Cover Database For the United States[J].Photogrammetric Engineering and Remote Sensing,2004,70(7):829-840. 被引量:1
  • 8Hansen M,Dubayah R,DeFries R.Classification Trees,An Alternative to Traditional Land Cover Classifiers[J].International Journal of Remote Sensing,1996,17:1075-1081. 被引量:1
  • 9Quinlan J R.C4.5:Programs for Machine Learning.San Mateo[M].CA:Morgan Kaufman Publishers,1993. 被引量:1
  • 10Quinlan J R.Induction of Decision Trees[J].Machine Learning,1986,1:81-106. 被引量:1

共引文献106

同被引文献214

引证文献13

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部