期刊文献+

基于立体视觉的轴距左右差检测新方法 被引量:1

New method for wheelbase difference detection based on stereovision
下载PDF
导出
摘要 针对国标中规定的轴距差检测要求,提出了基于立体视觉的轴距左右差检测新方法。建立了轴距差检测数学模型。根据图像处理技术,确定了车轮图像中心坐标的识别方案。建立了轴距左右差检测的实验系统,标定了双摄像机的内外参数,并对检测系统进行了系统误差分析。建立了车轮坐标三维重建理论模型,论述了轮毂中心坐标的计算过程。应用实验系统进行实车检测,结果表明,本文建立的理论模型正确,实验系统具有很高的检测精度。 A new vehicle wheelbase difference detection method was proposed based on the stereovision theory to meet the wheelbase difference detection requirements stipulated by the national standard.A mathematical model was built for the wheelbase difference detection.An identification scheme of the coordinates of the wheel image center was defined on the basis of image processing technology.An experimental system was established to detect the wheelbase difference,the intrinsic and extrinsic parameters of the dual-camera were calibrated and the systematic errors of the detection system were analyzed.A theoretical model was set up for the 3-dimensional reconstruction of the wheel coordinates,the calculation process of the wheel hub center coordinates was discussed.The results of application of the established experimental system to the real vehicle showed that the proposed theoretical model is correct and the experimental system is characterized by high detection precision.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第3期645-649,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省交通厅科技项目(2006-1-7-2) 国家自然科学基金项目(50775094)
关键词 车辆工程 立体视觉 图像处理 轴距左右差 检测 vehicle engineering stereovision image processing wheelbase difference detection
  • 相关文献

参考文献7

二级参考文献7

共引文献83

同被引文献16

  • 1胡以静,李政访,胡跃明.基于光流的运动分析理论及应用[J].计算机测量与控制,2007,15(2):219-221. 被引量:29
  • 2郭龙源.计算机视觉立体匹配相关理论与算法研究.南京理工大学学报,2009,32(9):62-70. 被引量:1
  • 3Kastinaki V,Zervakis M,Kalaitzakis K.A survey of videoprocessing techniques for traffic applications[J].Image andVision Computing,2003,21(4):359-381. 被引量:1
  • 4SUN Z,BEBIS G,MILLER R.On road vehicle detection:A review[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2006,21(4):694-711. 被引量:1
  • 5TSAI Luowei,HSIEH Junwei,FAN Kuochin.Vehicle de-tection using normalized color and edge map[J].IEEE Trans-actions on Image Processing,2007,16(3):850-864. 被引量:1
  • 6CHEN Y T,CHEN C S,HUANG C R,et al.Efficienthierarchiacl method for background subtration[J].PatternRecognition,2007,40(10):2706-2715. 被引量:1
  • 7LEE D S.Effective Gaussian mixture learning for video back-ground subtraction[J].IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2005,27(5):827-832. 被引量:1
  • 8Zivkovic Z,Van Der HeUden.Efficient adaptive density esti-mation per image Pixei for the task of background subtraction[J].PaRem Recognition Letters,2006,27(7):773-780. 被引量:1
  • 9HU Weiming,XIAO Xuejuan,XIE Dan.Traffic accidentprediction using 3-D model-based vehicle tracking[J].IEEETransactions on Vehicular Technology,2004,53(3):677-694. 被引量:1
  • 10王彪,王成儒,王芬芬.固定场景下多目标运动检测与跟踪[J].计算机工程与设计,2008,29(8):2014-2016. 被引量:3

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部