期刊文献+

基于改进粒子群算法的PID参数整定

Tuning of PID parameters based on improved particle swarm optimization algorithm
下载PDF
导出
摘要 粒子群算法是一种基于群智能的全局寻优方法,方法简单,易于实现,寻优效果好。PID控制因其算法简单、鲁棒性好、可靠性高而被广泛应用于工业控制过程。该文提出了一种改进的PSO算法以提高其优化性能,通过典型测试函数的实验证明了该改进的PSO算法具有较好的优化性能。最后,将改进后的PSO算法应用到PID参数整定中,通过MATLAB仿真证明了该方法的可行性和优越性。 Particle swarm optimization algorithm is a global optimization technique.The algorithm is simple for implement and excellent for application.PID control is used widely in many kinds of industry circumstance for its simple algorithm,high reliability and good robustness.This thesis proposed one kind improved PSO algorithm,based on the analysis of the basic PSO algorithm,succeeding to raise its convergence rate and the optimization precision.Furthermore,the provided method was proved feasible by its application to the PID controller parameter installation and was of better superiority through the MATLAB simulation.
作者 张索峰 李平
出处 《工业仪表与自动化装置》 2010年第2期53-55,共3页 Industrial Instrumentation & Automation
关键词 PID控制 PSO算法 参数 PID control PSO algorithm parameter
  • 相关文献

参考文献8

  • 1Shi Y,Eberhart R.A Modified Particle Swarm Optimizer.[C].In:Proceedings of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Press,1998:69-73. 被引量:1
  • 2Eberhart R,Shi Y H.Comparing Intertia Weights and Constriction Factor In Particle Swarm Optimezation[C].Proc 2000 Congress on Evolutionary Computation,IEEE Press,2000:84-88. 被引量:1
  • 3Lovbjerg M,Rasmussen T K,Krink T.Hybrid Particle Swarm Optimizer with Breeding and Subpopulation[C].Sanfrancisco:Proc of the 3th Genetic and Evolutionary Computation Conference,2001:469-476. 被引量:1
  • 4Shi Y,Eberhart R.Fuzzy Adaptive Particle Swarm Optimization[C].Seoul,Korea,In:Proceedings of the IEEE Conference on Evolutionary Computation,2001:101-106. 被引量:1
  • 5谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 6万佑红,李新华.用遗传算法实现PID参数整定[J].自动化技术与应用,2004,23(7):7-8. 被引量:18
  • 7曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 8王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定[J].控制与决策,2005,20(1):73-76. 被引量:83

二级参考文献46

  • 1张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994. 被引量:1
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975. 被引量:1
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73. 被引量:1

共引文献517

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部