摘要
在一致光滑的Banach空间E中,C是E中非空闭凸子集,f:C→C是压缩映像,T:C→C是非扩张映像且不动点集合F(T)非空,x0∈C是任一初始点,由粘滞迭代xn+1=αn f(xn)+(1-αn)Txn构造的序列{xn}在∣‖Tzn-xn‖-‖zn-xn‖∣=o(βn)条件下强收敛于T在C中的不动点。
Let E be a uniformly smooth Banach space,C a nonempty closed convex subset of E. Let f: C→C be a contractive mapping,and T: C→C be a nonexpansive mapping with the set of fixed point F(T)≠0,the initial guessx0∈C is chosen arbitrarily. Under|Tzn-xn-zn-xn|=0(βa) ,the sequence [xn} defined by xn+1=αnf(xn)+(1-αn)Txn,, strongly converges to a fixed point of T on C.
出处
《中国民航大学学报》
CAS
2010年第2期54-57,共4页
Journal of Civil Aviation University of China
基金
天津市自然科学基金项目(06YFJMJC12500)
关键词
粘滞迭代
压缩映像
非扩张映像
不动点
viscosity iteration
contractive mapping
nonexpansive mapping
fixed point