期刊文献+

基于参数估计的降晰函数辨识及图像复原算法(英文) 被引量:5

Algorithm of blur identification and image restoration based on parameter estimation
下载PDF
导出
摘要 成像系统的点扩展函数(PSF)以及观测噪声,在一般应用过程中是未知信息,因此,点扩展函数的辨识是一个具有挑战性的世界难题。为解决实际工作中遇到的在已知降晰类型情况下的降晰函数辨识和降晰图像复原问题,提出了基于参数估计的降晰函数辨识及降晰图像复原算法。首先,由初始猜测给定降晰函数参数的变化范围和参数的增量步长;然后,最小化降晰图像和由相应点扩展函数及降晰图像得到的实验观测图像的差的Frobenius范数,以确定点扩展函数的参数,进而确定降晰图像的点扩展函数并对降晰图像进行复原。应用基于Wiener滤波的频域循环边界算法对降晰图像进行复原。实验结果表明:在降晰图像信噪比较高的情况下,降晰函数的辨识结果是可靠和准确的,有较好的复原效果。 The point spread function(PSF) of the imaging system and the observation noise,are unknown a priori information in general applications.The identification of the PSF is a challenging and difficult problem in the world.In order to solve the problem of the identification and restoration when the degradation type is known,the algorithm of identification of the PSF and the restoration of the blurred images based on parameter estimation is proposed.First,the changing scope and the increment step length of the parameters are provided based on the original estimation.Second,the criterion in which the Frobenius norm of the difference between the estimated image with the corresponding PSF and the blurred image is minimized in every iteration step,and incorporated in order to determine the parameter of the PSF.Therefore,the PSF can be identified with the estimated parameter and the original image can be estimated via the general image restoration algorithms.In this paper,the frequency domain restoration algorithm based on the Wiener filtering is applied to restore the original images.The experimental results show that the identified result of the PSF is reliable and accurate,and the restoration effect via the identified PSF is better when the degraded image has high SNR.
出处 《红外与激光工程》 EI CSCD 北大核心 2010年第1期166-172,共7页 Infrared and Laser Engineering
基金 国家自然科学基金资助项目(60878051)
关键词 模糊辨识 图像复原 参数估计 WIENER滤波 FROBENIUS范数 Blur identification Image restoration Parameter estimation Wiener filtering Frobenius norm
  • 相关文献

参考文献12

  • 1MARK R B,KATSAGGELOS A K.Digital image restoration[J].IEEE Signal Processing Magazine,1997,14(2):24-41. 被引量:1
  • 2赵剡,李东兴,许东.抑制复原图像振铃波纹的频域循环边界算法[J].北京航空航天大学学报,2006,32(11):1290-1294. 被引量:11
  • 3KUNDUR D,HATZINAKOS D.Blind image deconvolution[J].IEEE Signal Processing Magazine,1996.13(3):43-64. 被引量:1
  • 4AYERS G R,DAINTY J C.Iterative blind deconvolution method and its applications[J].optics Letters,1988,13(7):547-549. 被引量:1
  • 5KUNDUR D,HATZINAKOS D.A novel blind deconvolution scheme for image restoration using recursive filmring[J].IEEE Transaction on Signal Processing,1998,46(2):375-389. 被引量:1
  • 6LI D X,ZHAO Y,XU D.Blind identification and restoration of the degraded images based on the nonnegativity and support constraints recursive inverse filtering algorithm[C]//SPIE,2007,6625:66250F-1-66250F-8. 被引量:1
  • 7LI D X,ZHAO Y,XU D.Identification and restoration of the turbulence degraded images based on the parametric estimation[C]//7th International Symposium on Test and Measurement,2007.2:1575-1578. 被引量:1
  • 8LAGENDUK R L,TEKALP A M,BIEMOND J.Maximum likelihood image and blur identification:A uniting approach[J].Opt Eng,1990,29(5):422-435. 被引量:1
  • 9LAGENDIJK R L,BIEMOND J,BOEKEE D E.Identification and restoration of noisy blurred images using the expectation-maximization algorithm[J].IEEE Trans Acoust,Speech,Signal Processing,1990,38(7):1180-1191. 被引量:1
  • 10REEVES S J,MERSEREAU R M.Blur identification by the method of generalized cross-validation[J].IEEE Traits Image Processing,1992,1(3):301-311. 被引量:1

二级参考文献9

  • 1Andrews H C,Hunt B R.Digital image restoration[M].Englewood Cliffs,New Jersey:Prentice-Hall,1977 被引量:1
  • 2Banham M R,Katsaggelos A K.Digital image restoration[J].IEEE Signal Processing Magazine,1997,14(2):24-41 被引量:1
  • 3Lun D P K,Chan T C L,Hsung T C,et al.Efficient blind image restoration using discrete periodic radon transform[J].IEEE Transactions on Image Processing,2004,13(2):188-200 被引量:1
  • 4Likas A C,Galatsanos N P.A variational approach for bayesian blind image deconvolution[J].IEEE Transactions on Signal Pprocessing,2004,52(8):2222-2233 被引量:1
  • 5Chen L,Yap K H.Efficient discrete spatial techniques for blur support identification in blind images deconvolution[J].IEEE Transactions on Signal Processing,2006,54(4):1558-1562 被引量:1
  • 6You Y,Kaveh M.A regularization approach to joint blur identification and image restoration[J].IEEE Transactions on Image Processing,1996,5:416-428 被引量:1
  • 7Mascakenhas M D A,Partt W K.Digital image restoration under a regression model[J].IEEE Transactions on Circuits and Systems,1975,22(3):252-266 被引量:1
  • 8Figueiredo M A T,Nowak R D.An em algorithm for wavelet-based image restoration[J].IEEE Transactions on Image Processing,2003,12(8):906-916 被引量:1
  • 9Helstrom C W.Image restoration by the method of least squares[J].Opt Soc Am,1967,57(3):297-303 被引量:1

共引文献10

同被引文献47

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部