期刊文献+

FBM湍流模型在云状空化流动数值计算中的应用与评价 被引量:9

Evaluation and Application of Filter Based Turbulence Model for Computations of Cloud Cavitating Flows
下载PDF
导出
摘要 为评价一种基于滤波函数湍流模型在非定常空化流动计算中的应用,分别采用基于标准RNGk-ε的滤波器模型(Filter based model,FBM)、修正RNGk-ε模型、基于修正RNGk-ε的FBM模型对绕Clark-y翼型云状空化流动进行模拟,研究云状空化流动现象,获得了随时间变化的空化形态、压力场和升、阻力等流场和动力特性。通过与试验结果的对比发现,不同湍流模型的选取对计算所得的空穴长度、压力场和升阻力均有影响,而对流场动力特性的主要频谱分布影响不明显。采用基于修正RNGk-ε的FBM模型可更准确的模拟出云状空化形态与空化区尾部涡团交替脱落的非定常细节。 To evaluate the application of the filter based model(FBM) in the simulation of cavitating flows,the cloud flow around the hydronautics foil is numerically simulated by using the filter based modified RNG k-ε、the standard RNG k-ε and the modified RNG k-ε models respectively.The time evolutions of the scales of cloud cavities,the lift and drag force of the hydrofoil are obtained and compared with experimental results.It is shown that the selection of different turbulence models has influence on the calculated cavity length,pressure field,lift and drag force significantly,but has no obvious influence on the main frequency distribution of flow field dynamic characteristic.Adopting FBM model based on modified RNG k-ε can more accurately simulate the cloud cavitation form and the details of cavitation shedding.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第8期147-153,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50979004)
关键词 滤波器模型 湍流模型 云状空化 脱落频率 Filter based model Turbulence model Cloud cavitation Shedding frequency
  • 相关文献

参考文献11

  • 1陈庆光,吴玉林,刘树红,吴墒锋,张永建,王涛.轴流式水轮机全流道内非定常空化湍流的数值模拟[J].机械工程学报,2006,42(6):211-216. 被引量:33
  • 2王福军,张玲,黎耀军,张志民.轴流式水泵非定常湍流数值模拟的若干关键问题[J].机械工程学报,2008,44(8):73-77. 被引量:54
  • 3GOPALAN S, KATZ J. Flow structure and modeling issues in the closure region of attached cavitation[J]. Physics of Fluids, 2000, 12(4): 895-911. 被引量:1
  • 4SINGHAL A K, ATHAVALE M M. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124: 617-624. 被引量:1
  • 5SENOCAK I, SHYY W. Evaluation of cavitation models for Navier-Stokes computations [C]//Proceedings of ASME Fluids Engineering Division Summer Meeting, Montreal, Canada, 2002: 14-18. 被引量:1
  • 6WANG G, OSTOJA-STARZEWSKI M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil[J]. Applied Mathematical Modelling, 2007, 31(3): 417-447. 被引量:1
  • 7WU J, WANG G, SHYY W. Time-dependent turbulent cavitating flow computations with interracial transport and filter based models[J]. International Journal for Numerical Methods for Fluids, 2005, 49: 739-761. 被引量:1
  • 8YAKHOT V, ORZAG S A. Renormalization group analysis of turbulence: Base theory[J]. J. Scient Comput, 1986(1): 3-11. 被引量:1
  • 9COUTIER-DELGOSHA O. Numerical prediction of cavitation flow on a two-dimensional symmetrical hydrofoil and comparison to experiments[J]. Journal of Fluids Engineering, 2007, 129(3): 279-291. 被引量:1
  • 10JOHANSEN S T, WU J, SHIYY W. Filter-based unsteady RANS computations [J]. Int. J. Heat and Fluid Flow, 2004, 25(1): 10-21. 被引量:1

二级参考文献17

  • 1WANG Fu-jun LI Yao-jun CONG Guo-hui WANG Wen-e WANG Hai-song.CFD SIMULATION OF 3D FLOW IN LARGE-BORE AXIAL-FLOW PUMP WITH HALF-ELBOW SUCTION SUMP[J].Journal of Hydrodynamics,2006,18(2):243-247. 被引量:37
  • 2NILSSON H.NUMERICAL investigations of turbulent flow in water turbines[D].Gothenburg:Chalmers University of Technology,2002. 被引量:1
  • 3SINGHAL A K,ATHAVALE M M,LI H Y,et al.Mathematical basis and validation of the full cavitation model[J].ASME Journal of Fluids Engineering,2002,124:617-624. 被引量:1
  • 4LAUNDER B E,SPALDING D B.The numerical computation of turbulence flows[J].Computer Methods in Applied Mechanics and Engineering,1974 (3):269-289. 被引量:1
  • 5PATANKAR S V.Numerical heat transfer and fluid flow[M].New York:Hemisphere,1980. 被引量:1
  • 6GUO S J, MARUTA Y, OKAMOTO H, et al. Complex pressure fluctuations and vibrations in a pump-water tunnel system[C]//Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference: Volume 2, Part A, July 6-10, 2003, Honolulu, Hawaii. New York: ASME, 2003: 19-26. 被引量:1
  • 7SCHRAPP H, STARK U, GOLTZ I, et al. Structure of the rotor tip flow in a highly-loaded single-stage axial-flow pump approaching stall, part Ⅰ:Breakdown of the tip-clearance vortex[C]//Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference, HT/FED 2004, July 11-15, 2004, Charlotte, NorthCarolina. New York: ASME, 2004:307-312. 被引量:1
  • 8WEGNER B, MALTSEV A, SCHNEIDER C, et al. Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments[J]. International Journal of Heat and Fluid Flow, 2004, 25(3): 528-536. 被引量:1
  • 9GOTO A, NOHMI M, SAKURAI T, et al. Hydrodynamic design system for pumps based on 3D CAD/CFD and inverse design method[J]. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124(2): 329-335. 被引量:1
  • 10MULLER N, EINZINGER J, LEPACH T, et al. Applica- tion of a multi level CFD-technique for the design optimisation of hydraulic machinery bladings[C] //Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference, HT/FED 2004, July l 1-15, 2004, Charlotte, North Carolina. New York: ASME, 2004: 601-608. 被引量:1

共引文献84

同被引文献164

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部