摘要
空气温度是地球大气系统能量和水分循环的关键参数,气象台站观测的空气温度是单点观测的,空间代表性较差,在区域尺度模型中应用还存在一些问题,作者提出了一个从卫星遥感资料直接反演空气温度的新方法。基于NOAAAVHRR资料反演的地表温度(Land Surface Temperature,T_(LS))和地面观测的空气温度(Air Temperature,T_a)的相关关系,建立了稀疏植被区域不同高程范围的空气温度遥感估算统计方法;基于NDVI和T_(LS)的梯形空间特征关系,建立了在中、高植被覆盖区域的空气温度遥感估算物理方法。经检验,稀疏植被区域空气温度反演绝对误差在1.5~1.8℃之间,中、高植被覆盖区域空气温度反演平均绝对误差为1.61℃,表明作者提出的空气温度遥感反演方法是可行的。
A new approach was developed to retrieve air temperature from remotely sensed data. In a sparse vegetation region, based on the relation between air temperature (Ta) and land surface temperature (TLS), three linear regression equations have been established according to the different grade of elevation. In a dense vegetation re- gion, "Vi- Ts" (vegetation index-surface temperature) method is used for the estimation of air temperature. Air temperature from this prototype algorithm is validated using NOAA-AVHRR data with actual observations of air temperature at China meteorological stations. The error in the sparse vegetation is about 1.5--1.8 ℃ (R2 =0.89) and the error in the dense vegetation is averagely 1.61 ℃ (R2 =0.90). The results show that algorithm for estimating air temperature has a high accuracy and can be used in operation.
出处
《气象》
CSCD
北大核心
2010年第4期75-79,共5页
Meteorological Monthly
基金
国家科技部"十一.五"科技支撑项目2006BAD04B04
国家科技部"十一.五"科技支撑项目2006BAD04B10资助
关键词
植被指数
地表温度
空气温度
反演方法
vegetation index, land surface temperature, air temperature, retrieval method