摘要
研究L5中4维双曲空间H4(c)的坐标函数是其Laplace的特征函数的球型及双曲型旋转曲面M的性质,得到M或为H4(c)的极小超曲面或M可与S2(a)×H1(a2-1c)(球型)或H2(a)×S1(a2+1c)(双曲型)叠合。
In this paper,properties of the spherical and hyperbolic rotation hypersurfaces M whose coordinate functions are proper functons of their Laplaces in H 4(c) are studied.Further,the following result is obtained:M is either a minimal hypersurface or congruent to S 2(a)×H 1(a 2-1c)(in spherical) or H 2(a)×S 1(a 2+1c)(in hyperbolic).
出处
《南昌大学学报(理科版)》
CAS
1998年第4期369-374,共6页
Journal of Nanchang University(Natural Science)
基金
江西省自然科学基金
关键词
有限型
旋转曲面
极小曲面
叠合
双曲空间
Minkowski space,finite type,rotational surface,minimal surface,congruent