期刊文献+

压缩传感理论在参数估计中的应用

Compressed sensing theory for parameter estimation problem
下载PDF
导出
摘要 参数估计是信号处理许多领域研究的热点,并有着广泛应用。通过引入压缩传感(Compressed Sensing,CS)理论的思想,提出了一种基于压缩传感理论的信号参数估计方法。它省略了抛弃大部分高速采样的数据来实现压缩的中间过程,通过使用少量非适应随机投影来完成。与匹配追踪(MP)算法相比,此算法在相同的低采样点数下有明显的优势。理论分析及计算机仿真结果证实了算法的有效性。 A new algorithm is proposed to achieve parameter estimation which is intensively studied and has been widely applied to many areas in signal processing.The idea of Compressed Sensing(CS) theory is introduced into parameter estimation.It integrates the processes of data sampling and compression in tranditional way by means of few non-adaptation random projections using CS algorithm.Compared with Matching Pursui(tMP) algorithm,CS algorithm has the obvious advantage even under sub-Nyquist sample rate.Theoretic analysis and experimental results illustrate the validity of the proposed algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第12期120-122,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60602043 No.60772084 四川省重点科技计划项目No.04GG021-020-5 No.2006X15-038 四川省应用基础研究项目(No.04JY029-059-2 No.2006J13-114)~~
关键词 压缩传感 参数估计 低速采样 匹配追踪算法 compressed sensing parameter estimation sub-sampling Matching Pursui(tMP) algorithm
  • 相关文献

参考文献10

  • 1王建英,尹忠科,陈磊.基于非正交分解的频率估计算法[J].电波科学学报,2007,22(1):64-68. 被引量:5
  • 2Donoho D.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 3Candes E,Tao T.Near optimal signal recovery from random pro-jections:Universal encoding strategies?[J].IEEE Trans on Information Theory,2006,52(12):5406-5425. 被引量:1
  • 4Baraniuk R.A lecture on compressive sensing[J].IEEE Signal Pro-cessing Magazine,2007. 被引量:1
  • 5Chen S,Donoho D L,Saunders M A.Atonuc decomposition by ba-sis pursuit[J].SIAM Review,2001,43(1):129-159. 被引量:1
  • 6Donoho D,Tsaig Y.Extensions of compressed sensing[J].Signal Pro-cessing,2006,86(3):533-548. 被引量:1
  • 7Figueiredo M A T,Nowak R D,Wright S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Process-ing,2007,1(4):586-598. 被引量:1
  • 8傅迎华.可压缩传感重构算法与近似QR分解[J].计算机应用,2008,28(9):2300-2302. 被引量:31
  • 9Tropp J A,Gilbert A.Signal recovey from partial information by orthogonal matching pursuit[EB/OL].(2005-04)http://www-personal.umich.edu/_jtropp/papers/TC05-Signal-Recovery.pdf. 被引量:1
  • 10Donoho D L,Tsaig Y,Drori I,et al.Sparse solution of underdetermined Linear equations by stagewise orthogonal matching pursuit[R/OL].Dept of Statistics,Stanford Univ.(2006-03).http://stat.stanford.edu/-idrori/StOMP.pdf. 被引量:1

二级参考文献21

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2CAND~S E, ROMBERG J, TAO T. Robust uncertainty principle: exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 - 509. 被引量:1
  • 3BARANIUK R G. Compressive sensing[ J]. IEEE Signal Processing Magazine, 2007, 24(4) : 118 - 121. 被引量:1
  • 4CANDES E, TAO T. Near optimal signal recovery from random matrix projections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 - 509. 被引量:1
  • 5DONOHO D, HUO XIAO-MING. Uncertainty principles and ideal atomic decomposition [ J]. IEEE Transactions Information Theory, 2001,47(7) : 2845 - 62. 被引量:1
  • 6CHEN SHAO-BING, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit[ R]. Technical Report 479, Department of Statistics, Stanford University, 2001 : 33 -61. 被引量:1
  • 7CANDES E. Compressive sampling[ C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain: [ s. n. ], 2006: 1433 - 1452. 被引量:1
  • 8GOLUB G, LOAN C. Matrix computations[ M]. Johns Hopkins: Baltimore, 1996, 被引量:1
  • 9CHEN S, PURSUIT B, PH D. Thesis, department of Statistics[D]. Stanford, CA: Stanford University, 1995. 被引量:1
  • 10BOYD S, VANDENBERGHE L. Convex optimization[ M]. Cambridge, UK: Cambridge University Press, 2004. 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部