期刊文献+

基于混合聚类和自组织映射的异常检测模型 被引量:1

An Abnormal Detection Model Based on Hybrid Clustering and Self Organizing Map
下载PDF
导出
摘要 针对异常检测方法中存在的异常连接信息不足的问题设计了一种基于混合聚类和自组织映射的异常检测模型.首先提出了一种聚类算法用以进行异常检测,然后再通过自组织映射(SOM)对检测出的异常连接进行分类以获得其更多的异常连接信息.最后应用实验数据集进行仿真,结果表明本检测模型是有效的,能够将检测到的异常连接进行分类并由其所属类别给出该异常连接的更多信息,且检测和分类的效率比较高,误报率低. In view of the lack of information about anomalous connections in anomaly detection approach, an anomaly detection model based on hybrid clustering and self organizing map (SOM) is proposed. Firstly, a clustering algorithm is proposed in order to detect anomalous connections, and then the SOM is applied to classifying the pre-detected anomalous connections, through which high level information about anomalous connections is acquired. Finally the experimental data are used for simulation. The experiment result shows that this model is effective, and can classify the detected anomalous connections and give more information about that connection from the category which it belongs to. The model has a high efficiency of the detection and classification with low false rate.
出处 《信息与控制》 CSCD 北大核心 2010年第2期136-141,共6页 Information and Control
基金 国家自然科学基金资助项目(60574082)
关键词 聚类 自组织映射 异常检测 信息获取 clustering SOM anomaly detection information acquisition
  • 相关文献

参考文献11

  • 1Ilgun K, Kemmerer R A, Porras P A. State transition analysis - A rule-based intrusion detection approach[J]. IEEE Transactions on Software Engineering, 1995, 21(3): 181-199. 被引量:1
  • 2Denning D E. An intrusion detection model[J]. IEEE Transactions on Software Engineering, 1987, 13(2): 222-232. 被引量:1
  • 3罗敏,王丽娜,张焕国.基于无监督聚类的入侵检测方法[J].电子学报,2003,31(11):1713-1716. 被引量:64
  • 4HanJW,KamberM.范明,孟小峰,等译.数据挖掘:概念与技术著[M].北京:机械工业出版社,2001. 被引量:1
  • 5蒋盛益,李庆华.基于引力的入侵检测方法[J].系统仿真学报,2005,17(9):2202-2206. 被引量:6
  • 6Jiang S Y, Song X Y, Wang H, et al. A clustering-based method for unsupervised intrusion detections[J]. Pattern Recognition Letters, 2006, 27(7): 802-810. 被引量:1
  • 7向继,高能,荆继武.聚类算法在网络入侵检测中的应用[J].计算机工程,2003,29(16):48-49. 被引量:41
  • 8Weng F F, Jiang Q S, Chen L F, et al. Clustering ensemble based on the fuzzy KNN algorithm[C]//The 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. Piscataway, NJ, USA: IEEE, 2007: 1001-1006. 被引量:1
  • 9Haykin S. Neural networks: A comprehensive foundation[M]. Upper Saddle River, NJ, USA: Prentice-Hall, 1999. 被引量:1
  • 10KDD99. KDD dataset[DB/OL]. (1999-10-28) [2009-04-01]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 被引量:1

二级参考文献19

  • 1Han Jiawei Kamber M.数据挖掘-概念与技术[M].高等教育出版社,2002.. 被引量:1
  • 2HanJiawei KamberM.数据挖掘—概念与技术[M].高等教育出版社,2002.. 被引量:1
  • 3Portnoy L, Eskin E,Stolfo S J.Intrusion Detection with Unlabeled Data Using Clustering. Philadelphia, PA:ln Proceedings of ACM CSS Workshop on Data Mining Applied to Security(DMSA,2001 ),2001. 被引量:1
  • 4Eskin E,Amold A,Prerau M A Geometric Framework for Unsupervied Anomaly Detection: Detecting Intrusions in Unlabeled Dala.CUCS Technical Report,2002. 被引量:1
  • 5Application of Data Mining to Intrusion Detection.http://www.isse.gmu.ed u/-csis/infs765/handouts/handout 12.pdf,2000. 被引量:1
  • 6Barbara D.ADAM:Detecting Intrusions by Data Mining.Proceedings of IEEE Workshop on Information Assurance and Security,2001. 被引量:1
  • 7Kdd99 Cup dataset.http://kdd.ics:uci.edu/databases/kddcup99/kddcup99.html, 1999. 被引量:1
  • 8Kenji Yamanishi ,Jun-Ichi Takeuchi,Graham Williams,Peter Milne. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms[C]. In: Proceedings of the Sixth ACM SIGKDD00, Boston, MA, USA, 320-324. 被引量:1
  • 9Kenji Yamanishi, Jun-ichi Takeuchi. Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner[C]. In:Proceedings of the seventh ACM SIGKDD01,San Francisco, California , 2001. 389-394. 被引量:1
  • 10Eleazar Eskin. Anomaly detection over noisy data using learned probability distributions[C]. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000), 2000. 255-262. 被引量:1

共引文献104

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部