摘要
FeCo-Al2O3 catalyst was prepared by an ultrasonic coprecipitation (UC) method for the growth of carbon nanotubes (CNTs) from catalytic decomposition of methane.Its catalytic performance was compared with that of the FeCo-Al2O3 catalyst counterparts prepared by stepwise impregnation (I) and conventional coprecipitation (C) methods,respectively.The structure and properties of the catalysts and the CNTs as produced thereon were investigated by means of XRD,XPS,TEM and N2 adsorption techniques.It was found that the catalyst prepared by the ultrasonic coprecipitation method was more active,and the yield and purity of the synthesized CNTs were promoted evidently.The XPS results revealed that there were more active components on the surface of the catalyst prepared by the ultrasonic coprecipitation method.On the other hand,N2 adsorption demonstrated that the catalyst prepared by the ultrasonic coprecipitation method conferred larger specific surface area,which was beneficial to dispersion of active components.TEM images further confirmed its higher dispersion.These factors could be responsible for its higher activity for the growth of CNTs from catalytic decomposition of methane.
FeCo-Al2O3 catalyst was prepared by an ultrasonic coprecipitation (UC) method for the growth of carbon nanotubes (CNTs) from catalytic decomposition of methane.Its catalytic performance was compared with that of the FeCo-Al2O3 catalyst counterparts prepared by stepwise impregnation (I) and conventional coprecipitation (C) methods,respectively.The structure and properties of the catalysts and the CNTs as produced thereon were investigated by means of XRD,XPS,TEM and N2 adsorption techniques.It was found that the catalyst prepared by the ultrasonic coprecipitation method was more active,and the yield and purity of the synthesized CNTs were promoted evidently.The XPS results revealed that there were more active components on the surface of the catalyst prepared by the ultrasonic coprecipitation method.On the other hand,N2 adsorption demonstrated that the catalyst prepared by the ultrasonic coprecipitation method conferred larger specific surface area,which was beneficial to dispersion of active components.TEM images further confirmed its higher dispersion.These factors could be responsible for its higher activity for the growth of CNTs from catalytic decomposition of methane.