期刊文献+

一种改进的水平集方法在Navier-Stokes问题形状优化中的应用 被引量:1

An Improved Level Set Method for the Shape Optimization of Navier-Stokes Problems
下载PDF
导出
摘要 本文将经典的形状灵敏度分析方法与一种改进的水平集方法相结合,给出了Navier-Stokes问题形状优化的一种新方法。该算法是在固定的Euler网格上进行计算且在优化过程中不需要对水平集函数进行重新初始化,从而可以有效地节省计算时间。数值算例说明该算法是稳定、高效的。 Based on the classical shape sensitivity and the variational principle, a new level set method is proposed for the optimal shape control of the steady-state Navier-Stokes fluid flow. The cost of this method is moderate since the shape is captured on a fixed Eulerian mesh. Furthermore, unlike the classical level set method, the re-initialization procedure is not necessary during the optimization process. Promising features of the proposed method are illustrated by several numerical examples.
出处 《工程数学学报》 CSCD 北大核心 2010年第2期242-248,共7页 Chinese Journal of Engineering Mathematics
基金 陕西省教育厅专项科研计划项目(9JK613) 国家自然科学基金数学天元青年基金(10926152)~~
关键词 形状优化 灵敏度分析 Navier-Stokes问题:水平集方法 shape optimization sensitivity analysis Navier-Stokes problem level set methods
  • 相关文献

参考文献10

  • 1Sokolowski J,Zolesio J P.Introduction to Shape Optimization:Shape Sensitivity Analysis[M].Berlin:Springer Series in Computational Mathematics,1992,10. 被引量:1
  • 2Borrvall T,Petersson J.Topology optimization of fluid in Stokes flow[J].International Journal for Numerical Methods in Fluids,2003,(41):77-107. 被引量:1
  • 3Modhammadi B,Pironneau O.Applied Shape Optimization for Fluids[M].Oxford:Clarendon Press,2001. 被引量:1
  • 4Osher S,Sethian J A.Fronts propagating with curvature-dependent speed:algorithms based on Hamilton Jacobi formulations[J].J Comp Phys,1988,(79):12-49. 被引量:1
  • 5Allaire G,et al.A level-set method for shape optimization[J].C R Acad Sci Paris Ser I,2002,334:1125-1130. 被引量:1
  • 6Duan X B,et al.Optimal shape control of fluid flow using variational level set method[J].Physics Letters A,2008,372(9):1374-1379. 被引量:1
  • 7段现报,马逸尘,韩西安.变分水平集方法在Stokes问题形状识别中的应用[J].西安交通大学学报,2008,42(10):1313-1316. 被引量:1
  • 8Allair G,et al.Structural optimization using sensitivity analysis and a level-set method[J].Journal of Computational Physics,2004,(194):363-393. 被引量:1
  • 9Mei Y L,Wang X M.A level set method for structural topology optimization and its applications[J].Advances in Engineering Software,2004,(7):415-441. 被引量:1
  • 10Chan T,Vese L.Active contours without edges[J].IEEE Trans Imag Proc,2001,(10):266-277. 被引量:1

二级参考文献10

  • 1MODHAMMADI B, PIRONNEAU O. Applied shape optimization for fluid[M]. Oxford, UK: Oxford University Press, 2001. 被引量:1
  • 2SOKOLOWSKI J, ZOLESIO J P. Introduction to shape optimization: shape sensitivity analysis [ M]. Berlin, Germany: Springer, 1992. 被引量:1
  • 3OSHER S, SETHIAN J A. Level set methods and dynamic implicit surface[M]. New York, USA: Springer-Verlag, 2002. 被引量:1
  • 4OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. J Comp Phys, 1988, 79: 12-49. 被引量:1
  • 5ALLAIRE G, JOUVE F, TOADER A M. A level-set method for shape optimization[J]. C R Acad Sci Paris: Ⅰ, 2002, 334: 1125-1130. 被引量:1
  • 6WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Comp Meth Appl Mech Eng, 2003, 192: 227-246. 被引量:1
  • 7ALLAIR G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194: 363-393. 被引量:1
  • 8MEI Y L, WANG X M. A level set method for structural topology optimization and its applications[J]. Advances in Engineering Software, 2004, 35: 415- 441. 被引量:1
  • 9CHAN T, VESE L. Active contours without edges [J]. IEEE Trans Image Process, 2001, 10: 266-277. 被引量:1
  • 10DUAN X B, MAY C, ZHANG R. Optimal shape control of fluid flow using variational level set method [J].Physics Letters A, 2008, 372: 1374-1379. 被引量:1

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部