期刊文献+

分数阶Nernst-Planck方程的有限差分/谱元法求解 被引量:2

A Finite Difference/Spectral Element Method for the Fractional Nernst-Planck Equation
下载PDF
导出
摘要 Nernst-Planck方程是用来描述在离子浓度梯度C及电场V共同存在的情况下,穿过渗透膜的离子(如钙,钾,钠,氯,镁等)流J的方程。但是,计算Nernst-Planck方程的数值解会遇到一些困难。本文考虑用以描述神经细胞中离子反常扩散现象的电缆型简化的分数阶Nernst-Planck方程,提出了一个时间有限差分/空间谱元法对该方程进行数值求解。我们给出了数值方法的详细构造过程以及实现方法。结果表明数值解在空间方向上具有指数阶收敛精度,在时间方向上具有2?α阶精度。最后,通过计算一个具有实际背景参数的问题说明所提方法的潜在应用。 The Nernst-Planck equation describes the flux of ions (for example, calcium, potassium, sodium, chloride, and magnesium etc.) through a diffusive membrane under the influence of both the ionic concentration gradient VC and electric potential VV. However, numerical approximations to the Nernst-Planck equation suffer from several difficulties. In this paper, we first briefly recall the derivation of the fractional Nernst-Planck equation in a cable-like geometry, which describes the anomalous diffusion in the movement of the ions in a neuronal system. Then a method combining finite differences in time and spectral element methods in space is proposed to numerically solve the underlying problem. The detailed construction and implementation of the method are presented. Our numerical experiences show that the convergence of the proposed method is exponential in space and (2 - a)-order in time. Finally, a practical problem with realistic physical parameters is simulated to demonstrate the potential applicability of the method.
出处 《工程数学学报》 CSCD 北大核心 2010年第2期207-218,共12页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10531080) 973"高性能科学计算研究"项目(2005CB321703) 福建省自然科学基金(S0750017)~~
关键词 分数阶Nernst—Planck方程:谱元法 有限差分法 Newton.Krylov迭代法 fractional Nernst-Planck equation spectral method finite difference method Newton- Krylov iteration
  • 相关文献

参考文献11

  • 1Jack J J B,et al.Electric Current Flow in Excitable Cells[M].Oxford:Oxford University Press,1975. 被引量:1
  • 2Qian N,Sejnowski T J.An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites,spines and axons[J].Biological Cybernetics,1989,62(1):1-15. 被引量:1
  • 3Barkai E,et al.From continuous time random walks to the fractional Fokker-Planck equation[J].Physical Review E,2000,61:132-138. 被引量:1
  • 4Metzler R,et al.Anomalous transport in external fields:continuous time random walks and fractional diffusion equations extended[J].Physical Review E,1998,58(2):1621-1633. 被引量:1
  • 5Oldham K B,Spanier J.The Fractional Caculus[M].New York:Academic Press,1974. 被引量:1
  • 6Hodgkin A L,Huxley A F.A quantitative description of membrane current and its application to conduction and excitation in nerve[J].Bulletin of Mathematical Biology,1990,52(1):25-71. 被引量:1
  • 7Samson E,Marchand J.Numerical solution of the extended Nernst-Planck model[J].Journal of Colloid and Interface Science,1999,215(1):1-8. 被引量:1
  • 8Lin Y M,Xu C J.Finite difference/spectral approximation for the time fractional diffusion equations[J].Journal of Computational Physics,2007,2(3):1533-1552. 被引量:1
  • 9Knoll D A,Keyes D E.Jacobian-free Newton-Krylov methods:a survey of approaches and applications[J].Journal of Computational Physics,2004,193:35-397. 被引量:1
  • 10Quarteroni A,Valli A.Numerical Approximation of Partial Differential Equations[M].New York:Springer-Verlag,1997. 被引量:1

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部