期刊文献+

基于局部相关性的L2Boosting算法 被引量:1

L2Boosting Algorithm Based on Local Correlation
下载PDF
导出
摘要 利用充分降维的思想对L2Boosting算法进行改进,提出基于局部相关性的L2Boosting(LCBoosting)算法。在每次迭代中,该算法根据响应变量与协变量的局部相关性充分提取信息,得到响应变量的线性组合来参与Boosting迭代,无须逐个分析所有变量。模拟结果表明,与L2Boosting算法相比,LCBoosting算法收敛速度快、预测精度高。 This paper improves L2Boosting algorithm by using the idea of sufficient dimension reduction and proposes a Local Correlation based L2Boosting(LCBoosting) algorithm.In each iteration,LCBoosting algorithm extracts information sufficiently according to the local correlation between response variable and covariant,gets a linear combination of response variable to join the Boosting iteration,and avoids analyzing all the variables one by one.Simulation results show that compared with L2Boosting algorithm,LCBoosting has better performance on the convergence rate and prediction precision.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第8期1-3,共3页 Computer Engineering
基金 国家自然科学基金资助项目(10771015) 中国人民大学研究生科研基金资助项目(22386104)
关键词 L2Boosting算法 充分降维 局部相关性 L2Boosting algorithm sufficient dimension reduction local correlation
  • 相关文献

参考文献7

  • 1Bühlmann P,Hothorn T.Boosting Algorithms:Regularization,Prediction and Model Fitting[J].Statist.Science,2007,22(4):477-505. 被引量:1
  • 2Friedman J.Greedy Function Approximation:A Gradient Boosting Machine[J].Ann.Statist.,2001,29(5):1189-1232. 被引量:1
  • 3Bühlmann P,Yu Bin.Boosting with the L2-loss:Regression and Classification[J].Journal of the American Statistical Association,2003,98(462):324-339. 被引量:1
  • 4Cook R D,Ni L.Using Intra Slice Covariance for Improved Estimation of the Central Subspace in Regression[J].Biometrika,2006,93:65-74. 被引量:1
  • 5Li Ker-Chau.Sliced Inverse Regression for Dimension Reduction[J].Journal of the American Statistical Association,1991,86(414):316-327. 被引量:1
  • 6Drucker H.Improving Regressors Using Boosting Techniques[C]// Proc.of the 14th Int'l Conf.on Mach.Learning.Nashville,TN,USA:[s.n.]:1997. 被引量:1
  • 7Cook R D,Weisberg S.An Introduction to Regression Graphics[M].New York,USA:Wiley,1994. 被引量:1

同被引文献5

  • 1Mohammad Assaad, Romuald Bone. A new boosting algo- rithm for improved time - series forecasting with recurrent neural networks [ J ]. Information Fusion, 2008,9 ( 1 ) : 41 -55. 被引量:1
  • 2Michael Kearns, Leslie G. Valiant. Cryptographic limita- tions on learning Boolean formulae and finite automata [ J ]. Journal of the Association for Computing Machinery, 1994,41 ( 1 ) :67 -95. 被引量:1
  • 3Michael C. Mozer, RichardWolniewicz, David B. Grimes, et al. Predicting subscriber dissatisfaction and im- proving retention in the wireless telecommunications in- dustry[J]. IEEE Transactions on Neural Networks, 2000 ( 11 ) : 690 - 696. 被引量:1
  • 4Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[ J ]. Neural Compu- tation, 2003,15 (7) : 1667 - 1689. 被引量:1
  • 5钟向阳,凌捷.基于多阈值Boosting方法的人脸检测[J].计算机工程,2009,35(11):172-174. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部