期刊文献+

基于灰度共生矩阵的大鼠肝细胞癌、肝硬化结节超顺磁性氧化铁MR增强图像纹理特征分析 被引量:9

Texture analysis of SPIO-enhanced MR imaging in rat models of hepatocellular carcinoma and hepatocirrhosis based on gray level co-occurrence matrix
下载PDF
导出
摘要 目的基于灰度共生矩阵分析大鼠肝细胞癌(HCC)结节及肝硬化超顺磁性氧化铁(SPIO)增强图像纹理特征。方法建立大鼠HCC及肝硬化模型,获取大鼠HCC、肝硬化结节SPIO增强图像,手动选取161个(HCC结节81个,肝硬化80个)感兴趣区(ROI),通过生成灰度共生矩阵,提取两组图像的二阶矩、对比度、相关、逆差矩、熵、方差6种纹理特征参数,并进行统计学分析。结果大鼠HCC结节呈相对均匀的高信号,较大HCC灶(>2 cm)呈高、低混杂信号,肝硬化结节在SPIO增强图像呈低信号。HCC组的相关及熵均值高于肝硬化组(P<0.05),二阶矩、对比度、逆差矩及方差的均值低于肝硬化组(P<0.05)。结论通过灰度共生矩阵提取的二阶矩、对比度、相关、逆差矩、熵、方差6种纹理特征参数,可进一步用于基于纹理特征的大鼠HCC、肝硬化结节SPIO增强图像的计算机辅助诊断。 Objective To analyze the texture features of SPIO-enhanced MR imaging in rat models of hepatocellular carcinoma(HCC) and hepatocirrhosis with gray level co-occurrence matrix(GLCM).Methods HCC and hepatocirrhosis models were established in rats.SPIO-enhanced MR images were obtained.A total of 161 regions of interests(ROIs,81 of HCC and 80 of hepatocirrhosis) were selected manually.Feature values as angular second moment,contrast,correlation,inverse difference moment,entropy,variance were extracted based on GLCM.The differences of feature values between two groups were statistically analyzed.Results In SPIO-enhanced MR images,hypointense signal changes were found in hepatocirrhosis,as well as hyperintensity in HCC nodules and intermixed intensity in larger HCC nodules.Correlation and entropy values of HCC group were higher than that of hepatocirrhosis group,while the angular second moment,contrast,inverse difference moment,and variance values were lower than hepatocirrhosis group.Conclusion The feature values based on GLCM could be used for the further computer aided diagnosis of SPIO-enhanced MR images in rat models of HCC and hepatocirrhosis.
出处 《中国医学影像技术》 CSCD 北大核心 2010年第3期563-566,共4页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金(30570475)
关键词 纹理分析 灰度共生矩阵 肝硬化 肝细胞 磁共振成像 Texture analysis Gray level co-occurrence matrix Liver cirrhosis Carcinoma hepatocellular Magnetic resonance imaging
  • 相关文献

参考文献11

  • 1Willatt JM, Hussain HK, Adusumilli S, et al. Imaging of hepatocellular carcinoma in the cirrhotic liver: challenges and controversies. Radiology, 2008,247 (2) : 311-330. 被引量:1
  • 2Namkung S, Zech CJ, Helmberger T, et al. Superparamagnetic ironoxide (SPIO)-enhanced liver MRI with ferucarbotran: efficacy for characterization of focal liver lesions. J Magn Reson Imaging, 2007,25(4):755-765. 被引量:1
  • 3Zhang X, Fujita H, Kanematsu M, et al. Improving the classification of cirrhotic liver by using texture features. Conf Proc IEEE Eng Med Biol Soe, 2005,1:867-870. 被引量:1
  • 4黄亚丽,李芬华,赵真.B超肝脏图像纹理特征提取方法的实验研究[J].中国医学影像技术,2004,20(12):1937-1939. 被引量:16
  • 5Tajima T, Zhang X, Kitagawa T, et al. Computer-aided detection (CAD) of hepatocellular carcinoma on multiphase CT images. Proc SPIE, 2007,6514(2) :61-65. 被引量:1
  • 6Herlidou MM, Constansb JM, Carsinc B, et al. MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging, 2003,21(9) :989-993. 被引量:1
  • 7姜慧研,赵越,杨新风.基于MRI的肝硬化程度的计算机辅助诊断[J].东北大学学报(自然科学版),2007,28(1):31-34. 被引量:3
  • 8Kato H, Kanematsu M, Zhang X, et al. Computer-aided diagnosis of hepatic fibrosis: Preliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network.AJR Am J Roentgenol, 2007,189(1):117-122. 被引量:1
  • 9张嘉宁,顾为望,许乙凯,吴清洪,袁进,邱添武.大鼠肝癌模型的建立及影像学表现[J].中国实验动物学杂志,1999,9(2):98-101. 被引量:15
  • 10赵卫东,管生,周康荣,敖红,陈中伟.DEN诱发大鼠肝细胞癌模型相关结节的MRI观察[J].中国医学影像技术,2005,21(6):828-830. 被引量:5

二级参考文献39

  • 1汪剑,陆建平,田建明,王飞,刘崎,王莉,龚建国,金爱国,曾浩.3D-FS-FLASH序列在肝细胞癌MRI诊断中的应用价值[J].中国医学影像技术,2003,19(6):699-701. 被引量:2
  • 2姜慧研,司岳鹏,雒兴刚.基于改进的大津方法与区域生长的医学图像分割[J].东北大学学报(自然科学版),2006,27(4):398-401. 被引量:16
  • 3罗运权,吴孟超,陈汉,钱光相,张晓华.大鼠肝脏癌变过程中肝细胞生长因子及其受体基因表达的研究[J].中华医学杂志,1996,76(11):822-825. 被引量:22
  • 4谷口庆治.数字图像处理[M].北京:科学出版社,2002.. 被引量:32
  • 5夏良正.数字图像处理[M].南京:东南大学出版社,1999.43-83. 被引量:160
  • 6J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615. 被引量:1
  • 7N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842. 被引量:1
  • 8Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581. 被引量:1
  • 9Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999. 被引量:1
  • 10S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414. 被引量:1

共引文献236

同被引文献58

引证文献9

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部