期刊文献+

M^(2+)-树:一种支持医学病例多度量空间检索的高效索引 被引量:3

M^(2+)-Tree:Processing Multiple Metric Space Queries of Medical Cases Efficiently with Just One Index
下载PDF
导出
摘要 由于从病例库中进行病例的相似性检索关系到能否提供给医生充分且正确的候选病例,因此如何高效、准确地实现影像病例的相似性检索是学术界和医学界的研究热点之一.迄今为止,很多文献提出了用于提高查询精度的检索策略,但涉及检索效率的文章还为之甚少.基于此,提出了一种融多种度量空间相似性计算于一体的M2+-树高维索引技术.该索引将病例中的文本和影像合成一个高维多特征向量,该向量在度量空间上将数据空间划分成若干子空间,并借助关键向量对划分后的数据子空间再进行向量空间上的二次划分.关键向量的无重叠划分和三角不等式过滤原理可以加快病例的检索速度.总之,在度量和向量空间上的两次数据划分使得M2+-索引树大大减少了待查询病例与数据库病例间的不必要相似性计算的次数,从而加快了相似性病例的检索速度.实验结果表明,M2+-树的性能优于典型的度量空间多特征索引代表M2-树的性能. How to process similarity retrieval of medical cases efficiently and effectively, which affects whether it can provide exact and plentiful candidate cases for doctors, has become one of the hot research topics in both academic community and medicine science. So far, although many retrieval strategies used for improving query precision have been proposed, yet few of them discuss the issue of retrieval efficiency. Motivated by this' an index, i. e. , M^2+-tree, is proposed in this paper. M^2+-tree combines, within one single index structure, information from multiple metric spaces, such as text features from diagnostic reports, physical features from medical images and so on. M^2+-tree divides the data space made of medical cases into multiple sub-spaces based on metric space, and each subspace is further divided into left and right twin parts based on key vector. Furthermore, it takes advantage of divisions without overlap over key vector and filtering principle of triangle inequality to speedup similarity search of medical cases. In a word, by using two kinds of divisions over metric space and vector space, many unnecessary similarity calculations are avoided, which improves the retrieval efficiency of medical cases dramatically. Experimental results show that the search performance of M^2+-tree is better than that of typical multi-feature index M^2-tree.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第4期671-678,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60773219) 国家"八六三"高技术研究发展计划基金项目(2007AA01Z192)~~
关键词 多特征索引 医学病例检索 诊断报告 医学影像 度量空间 向量空间 关键向量 multi-feature index retrieval of medical case diagnostic report medical image metric space vector space key vector
  • 相关文献

参考文献16

  • 1胡熙芳,谢维敢,马金瑞.数字化医学影像设备的应用与发展[J].中国医学装备,2006,3(2):21-24. 被引量:12
  • 2The Evidence-Based Radiology Working Group.Evidence-based radiology:A new approach to the practice of radiology[J].Radiology,2001,220(3):566-575. 被引量:1
  • 3邵虹,崔文成,张继武,赵宏.低级特征和语义特征相结合的医学图像检索方法[J].中国图象图形学报(A辑),2004,9(2):220-224. 被引量:12
  • 4张泉,邰晓英,巴特尔,赵杰煜.基于底层特征融合和相关反馈的医学图像检索[J].中国医疗器械杂志,2008,32(3):170-174. 被引量:3
  • 5Guttman A.R-Trees:A dynamic index structure for spatial searching[C]//Yormark B.Proc of the ACM SIGMOD Conf.New York:ACM,1984:47-57. 被引量:1
  • 6Berkmann N,Krigel H P,Schneider R,et al.The R*-tree:An efficient and robust access method for points and rectangles[C]//Hector G M,Jagadish H V.Proc of the ACM SIGMOD Conf.New York:ACM,1990:322-331. 被引量:1
  • 7Katayama N,Satoh S.The SR-tree:An index structure for high-dimensional nearest neighbor queries[C]//Peckham J.Proc of the ACM SIGMOD Conf.New York:ACM,1997:369-380. 被引量:1
  • 8White D A,Jain R.Similarity indexing with the SS-tree[C]//Stanley Y W S.Proc of the 12th Int Conf on Data Engineering.Los Alamitos,CA:IEEE Computer Society,1996:516-523. 被引量:1
  • 9Lin K I,Jagadish H V,Faloutsos C.The TV-tree:An index structure for high-dimensional data[J].VLDB Journal,1994,3(4):517-542. 被引量:1
  • 10Berchtold S,Kieim D A,Kriegel H P.The X-tree:An index structure for high-dimensional data[C]//Proc of the 22nd VLDB Conf.San Francisco:Morgan Kaufmann,1996:28-39. 被引量:1

二级参考文献46

  • 1顾志伟,吴秀清,荆浩,尹东,王艺元.一种基于特征选择的医学图像检索方法[J].中国生物医学工程学报,2007,26(1):30-34. 被引量:9
  • 2章毓晋.图像工程[M].北京:清华大学出版社,2001.. 被引量:3
  • 3Antonie Maria-Luiza, Zaiane Osmar R, Coman Alexandru.Application of data mining techniques for medical image classification[A]. In: Proceedings of the Second International Workshop on Multimedia Data Mining [C], San Francisco,USA, 2001 : 94- 101. 被引量:1
  • 4Zhu Lei, Zhang Aidong, Rao Aibing, et al. Keyblock: An approach for content-based image retrieval[A]. In: Proceedings of ACM Multimedia[C], Los Angeles, California, USA, 2000:157-166. 被引量:1
  • 5Zheng Zhijie, Leung Clement H C. Graph indexes of 2D-thinned images for rapid content-based image retrieval [J]. Journal of Visual Communication and Image Representation, 1997, 8(2):121-134. 被引量:1
  • 6Nastar Chahab, Mitschke Matthias, Meilhac Christophe.Efficient query refinement for image retrieval [A]. In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C], Santa Barbara,California, 1998 : 23 -25. 被引量:1
  • 7Punpiti Plamsa-nga, Alexandridis Nikitas A, Srakaew Sanan, et al. Multi-feature content-based image retrieval [A]. In,International Conference on Computer Graphics and Imaging[C], Halifax, Canada, 1998:1-4. 被引量:1
  • 8Shih Timothy K, Huang Jiungyao, Wang Chingsheng, et al. An intelligent content-based image retrieval system based on color,shape and spatial relations[J]. Proceedings of National Science Council ,2001,25(4) : 232- 243. 被引量:1
  • 9Flusser Jan. On the independence of rotation moment invariants[J]. Pattern Recognition,2000,33(9) : 1405-1410. 被引量:1
  • 10[1]Guttman A. R-Trees: A dynamic index structure for spatial searching. In: Yormark B, ed. Proc. of the ACM SIGMOD Conf. Boston,1984. 47~57. 被引量:1

共引文献38

同被引文献40

  • 1卢新平.强化病案书写的“循证”意识[J].中国病案,2005,6(4):15-16. 被引量:5
  • 2胡熙芳,谢维敢,马金瑞.数字化医学影像设备的应用与发展[J].中国医学装备,2006,3(2):21-24. 被引量:12
  • 3刘晓宇,高建宏,刘晓东,吴大方.糖尿病临床病案资料数据库的设计与实现[J].医疗卫生装备,2006,27(5):72-73. 被引量:3
  • 4张骊峰,章鲁.医学影像数据库的索引及检索技术的研究[J].国际生物医学工程杂志,2007,30(3):159-163. 被引量:3
  • 5Zheng K,Mei Q,Hanauer DA.Collaborative Search in Electronic Health Records[J].Am Med Inform Assoc.2011 May 1; 18(3):282-291. 被引量:1
  • 6Wei C H, Li Y, Li C T. Effective extraction of Gabor features for adaptive mammogram retrieval [C] //Proceedings of IEEE International Conference on Multimedia and Expo. Los Alamitos: IEEE Computer Society Press, 2007: 1503- 1506. 被引量:1
  • 7Xu X Q, Lee D J, Antani S, et al. A spine X-ray image retrieval system using partial shape matching [J]. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(1): 100-108. 被引量:1
  • 8Avni U, Greenspan H, Konen E, et al. X-ray categorization and retrieval on the organ and pathology level, using patch- based visual words [J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 733-746. 被引量:1
  • 9Howarth P, Yavlinsky A, Heesch D, et al. Medical image retrieval using texture, locality and colour [C] //Proceedings of the 5th Conference on Cross-Language Evaluation Forum: Multilingual Information Access for Text, Speech and Images. Heidelberg: Springer, 2004:740-749. 被引量:1
  • 10Tommasi T, Orabona F, Caputo B. Discriminative cue integration for medical image annotation [J]. Pattern Recognition Letters, 2008, 29(15) : 1996-2002. 被引量:1

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部