期刊文献+

基于分数阶微分和形态学多级合成的岩石节理裂隙图像分割 被引量:7

Rock joint image segmentation based on fractional differential and multi-grade combination in mathematical morphology
下载PDF
导出
摘要 岩石节理裂隙形状复杂且无规则,图像中带有大量噪声,利用传统的图像分割方法很难达到很好的分割效果。提出了一种基于分数阶微分和数学形态学多级合成的边缘检测方法。首先对岩石裂隙图像进行噪声滤除、图像分割、空腔填充、短枝去除等操作,然后使用分数阶微分的方法进行预处理,最后采用改进形态学多级合成方法得到结果。实验结果表明,该方法与传统算子相比,对岩石节理裂隙图像具有较好的边缘检测能力和抗噪性。 Rock joint network is very complex and there is much noise in a rock image.The traditional image segmentation methods cannot obtain satisfactory results.A new edge detection algorithm was proposed based on fractional differential and multi-grade synthesis of mathematical morphology.It needs to pretreat the rock fracture image first by image processing operation such as noise filtering,image segmentation,cavity filling,spur removal,etc.Then fractional differential algorithm and multi-grade synthesis of mathematical morphology were used to get the results.The experimental results,compared with the traditional morphological methods,show that the studied algorithm maintains good detected edges of rock joint images and can increase the denoising power as well.
出处 《计算机应用》 CSCD 北大核心 2010年第4期929-931,942,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873186/F020509)
关键词 图像分割 分数阶微分 数学形态学 多级合成 岩石节理裂隙 image segmentation fractional differential mathematical morphology multi-grade synthesis rock joint
  • 相关文献

参考文献9

  • 1XU JIANG-YAN,WANG WEI-XING,YE LIN-NING.Rock fracture edge detection based on quatemion convolution by scale multiplication[J].Optical Engineering,2009,48(9):1-7. 被引量:1
  • 2Pu Y F.Implement any fractional order multilayer dynamics as sociative neural network[C]//Prncedings of 6th International Conference on ASIC.Piscataway:IEEE Press,2005:638-641. 被引量:1
  • 3王新,黄兆云.基于多结构元素的数学形态学图像边缘检测[J].计算机工程与应用,2008,44(7):89-90. 被引量:15
  • 4HU DONG,TlAN XIANG-ZHONG.A multi-directions algorithm for edge detection based on fhzzy mathematical morphology[C]//Proceedings of the 16th International Conference on Aritificial Reality and Telexistence Workshops.Washington,DC:IEEE Computer Society,2006:361-364. 被引量:1
  • 5郭玉堂,吕皖丽,罗斌.基于模糊熵和结构特征的边缘检测方法[J].华南理工大学学报(自然科学版),2008,36(5):89-94. 被引量:4
  • 6MOHAMMADZADEH A,TAVAKOLI A,MOHAMMAD J.et al.Road extraction based on fuzzy logic and mathematical morphology from pan-sharpened ikonos images[J].The Photogrammetric Record,2006,21(113):44-60. 被引量:1
  • 7PU YI-FEI,WANG WEI-XING,ZHOU JI-LIU.Image texture details analysis filter on fractional differential theory[J].Science in China,2008,51. 被引量:1
  • 8崔冰,王卫星.基于统计模式识别的岩石节理图像分割方法[J].计算机工程与应用,2006,42(10):213-215. 被引量:8
  • 9RIITTERS K H,VOGT P.SOILLE P,et al.Neutral model analysis of landscape patterns from mathematical morphology[J].Landscape Ecology,2007,22(7):1033-1043. 被引量:1

二级参考文献29

  • 1王保平,刘升虎,张家田,张艳宁,范九伦.一种基于模糊熵和FKCN的边缘检测方法[J].计算机学报,2006,29(4):664-669. 被引量:22
  • 2范九伦.模糊熵理论[M].西安:西北大学出版社,1999.. 被引量:33
  • 3MilanSonka VaclavHlavac RogerBoyle.Image Processing,Analysis,and Machine Vision[M].北京:人民邮电出版社,2002.. 被引量:3
  • 4Anil K Jain,Robert P W Duin,Jianchang Mao.Statistical pattern recognition[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2000; 22 (1) 被引量:1
  • 5Mjka S,Ratsch G,Weston J et al.Fisher discriminant analysis with kernels[J].Neural networks for Signal Processing Ⅸ,New York:IEEE Press,1999:41~48 被引量:1
  • 6唐长青,黄诤.数学形态学方法及其应用[M].北京:科学出版社,1990. 被引量:4
  • 7Serra J.Image analysis and mathematical morphology[M].London:Academic Press, 1982. 被引量:1
  • 8Banghaln J A,Marshatl S.Image and signal processing with mathematical morphology[J].Electronics & Communlcation Engineering Journal, 1998-06. 被引量:1
  • 9Gonzalez R C, Woods R E. Digital image processing [ M ]. New York : Addison Wesley, 1992. 被引量:1
  • 10Canny J F. A computational approach to edge detection [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1986,8 (6) :679-698. 被引量:1

共引文献24

同被引文献98

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部