期刊文献+

基于色度学空间的多元图表示 被引量:3

Graphical representation based on chromatic space
下载PDF
导出
摘要 针对传统的多元图表示可以表示信息在空间中的几何分布,但无法表示类别概率的缺点,本文提出基于色度学空间的彩色多元图表示。在保留传统多元图表示优点的基础上,集成了色度学维度,利用色度混合原理表示不同类别数据在空间点所占的比例,有利于通过直观的视觉认识类别分布信息以及引入图像处理方法。比传统的多元图表示更适合可视化模式识别的应用。 The graphical representation is a excel tool for representing the geometrical distribution of data, but the category of data could not be illustrated by it. In this paper, a new type of representation named chromatic graphical representation is proposed. The novel method integrates the chromatic space into graphical representation and represents the data based on chromatic theory. As the result of that, chromatic graphical representation inherits the merits of traditional and represent the eategnry information by chromatic of the current sample. The illustration of this paper shows the dominance in intuitive color mixing and introducing image processing in visual pattern recognition.
出处 《燕山大学学报》 CAS 2010年第2期111-114,共4页 Journal of Yanshan University
基金 国家自然科学基金资助项目(60904100)
关键词 多元图表示 色度学 可视化模式识别 概率分布 graphical representation chromatics visual pattern recognition probability distribution
  • 相关文献

参考文献6

  • 1Ben Fry.可视化数据[M].张羽,译.北京:电子工业出版社,2009. 被引量:2
  • 2Elzbieta PeRkalska,Robert PWDuin,Pavel Paelik.Prototype selection for dissimilarity-based classifiers[J].Pattern Recogmtion,2006,39(2):189-208. 被引量:1
  • 3张涛,洪文学,景军,赵勇.模式识别中的表示问题[J].燕山大学学报,2008,32(5):382-388. 被引量:3
  • 4约翰逊,威克思.实用多元统计分析[M].6版.陆璇,叶俊,译.北京:清华大学出版社,2008. 被引量:1
  • 5张涛,洪文学,景军,彭勇.高维数据的2D图单点表示原理[J].燕山大学学报,2008,32(5):397-400. 被引量:2
  • 6胡威捷,汤顺青,朱正芳编著..现代颜色技术原理及应用[M].北京:北京理工大学出版社,2007:583.

二级参考文献53

  • 1张涛,王成儒.窗口纹理分析方法[J].仪器仪表学报,2006,27(z3):2289-2290. 被引量:4
  • 2陈长亮,杨伟杰,陈振生.基于图像识别句法分析的心电图计算机自动分析[J].中国医疗器械信息,2006,12(3):17-18. 被引量:4
  • 3张谢华,张申.车辆牌照字符识别算法的设计[J].电视技术,2007,31(5):88-90. 被引量:2
  • 4Chang T, Kuo C C J. Texture analysis and classification with tree-structured wavelet transform [J]. IEEE Transactions on Image Processing, 1993,2 (4): 429-441. 被引量:1
  • 5Jafari-Khouzani K, Soltanian-Zadeh H. Rotation-invariant multiresolution texture analysis using radon and wavelet transforms [J]. IEEE Transactions on Image Processing, 2005,14 (6): 783-795. 被引量:1
  • 6Zhou Xiang Sean, Huang Thomas S. Edge-based structural features for content-based image retrieval [J]. Pattern Recognition Letters, 2001,22 (5): 457-468. 被引量:1
  • 7Goldfarb L, Gay D. What is a structural representation [R]. 5th variation.Frederictort, Canada:University of New Brunswick, 2005. 被引量:1
  • 8Goldfarb L. On the foundations of intelligent processes I. An evolving model for pattern recognition [J]. Pattern Recognition, 1990,23 (6): 595-616. 被引量:1
  • 9Goldfarb L, Golubitsky O. What is a structural measurement process [R].Fredericton, Canada: University of New Brunswick, 2001. 被引量:1
  • 10Fred A, Jain A K. Robust data clustering [C] //Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison-Wisconsin, USA, 2003: 128-133. 被引量:1

共引文献3

同被引文献28

  • 1胡朝晖,刘大成,刘穗宏,代亮,李娜.基于OEE的企业设备效率诊断与改善[J].制造技术与机床,2006(1):81-84. 被引量:17
  • 2刘文峰,吴学毅,刘长富.基于RGB色度空间的车牌定位及矫正算法[J].武汉大学学报(信息科学版),2006,31(9):785-787. 被引量:7
  • 3马垣,曾子维,迟呈英,等.形式概念及其新进展[M].北京:科学出版社.2010:170—181. 被引量:4
  • 4Wile R.Restructuring lattice theory:an approach based on hierarchies of concepts[M].Dordrecht Boston:Reidel,1982:445-470. 被引量:1
  • 5Liu Xulong,Hong Wenxue.Using formal concept analysis to visualize relationships of syndromes intraditional Chinese medicine[J].Medical Biometrics,LNCS,2010,6165:315-324. 被引量:1
  • 6Cheng Chingwu,Yao Hongqing,Wu Tsungchih.Applying data mining techniques to analyze the causes of major occupational accidents in the petrochemical industry[J].Journal of Loss Prevention in the Process Industries,2013,26(6):1269-1278. 被引量:1
  • 7Chen Chunhsien.Knowledge discovery using genetic algorithm for maritime situational awareness[J].Expert Systems with Applications,2014,41(6):2742-2753. 被引量:1
  • 8Saad F,Nürnberger A.Overview of prior-art cross-lingual information retrieval approaches[J].World Patent Information,2012,34(4):304-314. 被引量:1
  • 9Pera M S,Qumsiyeh R,Ng Yiukai.Web-based closed-domain data extraction on online advertisements[J].Information Systems,2013,38(2):183-197. 被引量:1
  • 10Chmielewski M R,Grzymala-Busse J.Global discretization of continuous attributes as preprocessing for machine learning[J].International Journal of Approximate Reasoning,1996,15(4):319-331. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部