期刊文献+

基于STPN求解随机网络最短路的仿真方法 被引量:2

Simulation Approach to Find the Shortest Path of Stochastic Network Based on STPN
下载PDF
导出
摘要 提出了基于时延Petri网求解网络最短路的仿真方法,该方法保持了Dijkstra算法的特性,充分利用了Petri网的并发特性,可迅速而自动地求出最短路,所需计算量仅正比于最短路的长度,与路径图的复杂程度及路径图中的通路总数无关。并将该算法推广到随机网络情形,提出基于随机时延Petri网(STPN)的随机网络最短路仿真算法,可迅速而准确地找到起点与终点之间的随机网络最短路的分布函数。 The simulation method was presented for solving the shortest path of network based on timed Petri net.The method maintained the characteristics of the Dijkstra algorithm,and made full use of the concurrent characteristics of Petri nets.The shortest path can be calculated quickly and automatically.The required computation quantity was only proportional to the length of the shortest path,and it was unrelated to the complexity or the total number of pathway of the road map.The algorithm was extended to the case of stochastic network while a simulation algorithm of the shortest path of stochastic network was provided based on stochastic timed Petri net(STPN),which can quickly and accurately find the distribution function of the shortest path of stochastic network between the starting point and the end.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2010年第2期197-201,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 湖北省教育厅科学研究基金资助项目(Q20081502) 湖北省企业竞争力研究中心科研基金资助项目(Qyjzl2007y0012)
关键词 随机网络 最短路 随机时延Petri网 stochastic network shortest path stochastic timed Petri net
  • 相关文献

参考文献11

  • 1DIJKSTRA E W.A note on two problems in connection with graphs[J].Numerical Mathematics,1959(1):269-271. 被引量:1
  • 2HAN Y J,PAN V Y,REIF J H.Efficient parallel algorithms for computing all pair shortest paths in directed graphs[J].Algorithmic,1997(17):399-415. 被引量:1
  • 3FRANK H.Shortest paths in probabilistic graphs[J].Operations Research,1969(17):583-599. 被引量:1
  • 4MIRCHANDANI P B.Shortest distance and reliability of probabilistic networks[J].Computer and Operations Research,1976(3):347-676. 被引量:1
  • 5董振宁,张召生.随机网络的最短路问题[J].山东大学学报(理学版),2003,38(3):6-9. 被引量:7
  • 6柳亚玲,邹伟松.随机时间依赖网络的最短路径[C]//全国软件技术研讨会.2001:271-273. 被引量:2
  • 7HASSIN R,ZEMEL E.On shortest paths in graphs with random weights[J].Math Oper Res,1985 (10):557-564. 被引量:1
  • 8MIRCHANDANI P B,SOREUSH H.Optimal paths in probabilistic networks:a case with temporary preferences[J].Computer and Operations Research,1985(4):365-381. 被引量:1
  • 9GEORGE H P,JOHN N T.Stochastic shortest path problems with resource[J].Networks,1996(27):133-143. 被引量:1
  • 10RANDOLPH W H.The fastest path through a network with random time-dependent travel times[J].Transportation Science,1986,20(3):24-34. 被引量:1

二级参考文献11

  • 1P B Mirchandani, H Soroush. Optimal paths in probabilistic networks: A case with temporary preferences Comlmt[ J]. Oper Res 1985,12(4) : 365 - 381. 被引量:1
  • 2P B Mirchandani, H Soroush. Routes and flows in stochastic networks Stochastics in Combinatorial Optimization(G Andreatta, F Mason,and P Serafini Eds) [M]. Singapore: World Scientific, 1987. 被引量:1
  • 3George H Polychronopoulos, John N Tsitsildis, Stochastic shortest path problems with recourse[J]. Networks, 1996, 27:133 ~ 143. 被引量:1
  • 4Randolph W Hall. The fastest path through a network with random time-dependent travel times[ J ]. Transportation science, 1986, 20(3 ) : 被引量:1
  • 5Elise D Mimer-Hooks, Hani S Mahmasaani. Least Possible Time Paths in Stochastic, Time-Varying Networks[J]. Comput & Opa Rea1998, 25(12) :. 被引量:1
  • 6E W Dijkstra. A note on two problems in connection with graphs[J]. Numer Math, 1959, 1: 269- 271. 被引量:1
  • 7H Frank, Shortest paths in probabilistic graphs[J]. Oper Res 1969, 17: 583- 599. 被引量:1
  • 8R Hassin, E Zemel. On shortest paths in graphs with random weights[J]. Math OperRes, 1985, 10: 557-564. 被引量:1
  • 9[美]赵亦林 谭国真(译).车辆定位与导航系统[M].电子工业出版社,1999.. 被引量:8
  • 10杨兆升,李全喜.基于城市交通控制系统的动态车辆行驶路线选择的方法[J].公路交通科技,1999,16(1):33-36. 被引量:9

共引文献6

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部