期刊文献+

随机激励下振动系统非线性特性定性方法研究 被引量:5

CHARACTERIZATION OF NONLINEAR VIBRATING SYSTEMS UNDER RANDOM EXCITATION
原文传递
导出
摘要 结合FPK方程和非线性等效原理,对随机激励下的分别含有非线性阻尼、非线性刚度的单自由度系统计算等效阻尼及等效刚度。结果表明:非线性系统的等效线性频响函数图及奈奎斯特图随外激励量级的变化而变化,不同非线性类型的等效频响函数及奈奎斯特图随外激励量级的变化规律不同,从而给出了对根据实测频响函数与奈奎斯特图变化规律定性分析振动系统非线性特性和软硬特性的方法,为真实非线性动力学系统建模提供了理论依据。最后应用此方法对铝蜂窝夹层板的随机试验数据进行定性分析,得到结果可用于指导建模。 Under random excitation, the behavior of SDOF nonlinear system is investigated. Nonlinear damping and nonlinear siffness are considered respectively. Equivalent linear damping and equivalent linear stiffness of nonlinear system are caculated by combining FPK transform and equivalent principle method. Results of equivalent linear FRF (Frequency Response Function) and Nyquist show that the FRF and Nyquist will change with the variation of excitation level. Moreover, it is observed that different nonlinear type shows different features. Thus the type of nonlinear can be charactered, and the hardening or softening characrteristic of the system can be deduced too.The result provides a theoretical foundation for choosing the model of the nonlinear dynamic system. The method can be used to identify the random test data of an aluminum honeycomb sandwich board to character the the type of nonlinear.
出处 《工程力学》 EI CSCD 北大核心 2010年第4期24-29,共6页 Engineering Mechanics
基金 863计划项目(2007AA702202)
关键词 随机激励 非线性阻尼 非线性刚度 FPK变换 等效线性频响函数 random excitation nonlinear damping nonlinear stiffness FPK transform equivalent linear FRF
  • 相关文献

参考文献10

  • 1朱位秋.随机振动[M].北京:科学出版社,1998.. 被引量:76
  • 2Michael Feldoman. Nonlinear system vibration analysis using hilbert transform-II. Forced vibration analysis method 'Forcevib' [J]. Mechanical Systems and Singal Processing, 1994, 8(3): 309-318. 被引量:1
  • 3Gaetan Kerschen. Past, present and future of nonlinear system identification in strucural dynamics [J]. Mechanical Systems and Singal Processing, 2006, 20: 505-592. 被引量:1
  • 4Worden K, Tomlinson G R. Nonlinearity in structural dynamics: Detection, identification and modelling [M]. Insitute of Physics Publishing, 2001. 被引量:1
  • 5Dunne J F, Ghanbari M. Extreme-value prediction for nonlinear stochastic oscillators via numerical solutions of the stationary FPK equation [J]. Journal of Sound and Vibrarion, 1997, 206(5): 697-724. 被引量:1
  • 6Wang Rubin, Kiminhiko Yasuda, Zhang Zhikang. A generalized analysis technique of the stationary FPK equation in nonlinear systems under gaussian white noise excitations [J]. International Journal of Engineering Science, 2000, 38: 1315- 1330. 被引量:1
  • 7Yang Ping. Experimental and mathematical evaluation of dynamic behaviour od an oil-air coupling shock absorber [J]. Mechanical Systems and Signal Processing, 2003: 17(6): 1367- 1379. 被引量:1
  • 8杨平.随机激励时多介质耦合型减振器求解的一种近似方法[J].工程力学,2006,23(7):170-175. 被引量:2
  • 9胡海岩编著..应用非线性动力学[M].北京:航空工业出版社,2000:249.
  • 10庄表中等编著..非线性随机振动理论及其应用[M].杭州:浙江大学出版社,1986:344.

二级参考文献13

  • 1Yang Ping Zhong Yifang Zhou JiSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, ChinaLiu Yong Guilin Institute of Electronic Technology.CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER[J].Chinese Journal of Mechanical Engineering,2002,15(3):222-227. 被引量:4
  • 2朱位秋.随机振动[M].北京:科学出版社,1998.. 被引量:76
  • 3Chandra N,Shekhar,Hatwal H.Response of non-linear dissipative shock isolators[J].J.of Sound and Vibration,1998,214(4):589~603. 被引量:1
  • 4Dunne J F.Extreme-value prediction for non-linear stochastic oscillators via numerical solutions of the stationary FPK equation[J].Journal of Sound and Vibration,1997,206(5):697~724. 被引量:1
  • 5Liu X B,Liew K M.The Lyapunov exponent for a codimension two bifurcation system that is driven by a real noise[J].International Journal of Non-Linear Mechanics,2003,38(10); 1495~1511. 被引量:1
  • 6Ni Y Q,Ying Z G,Ko J M,Zhu W Q.Random response of integrable Duhem hysteretic systems under non-white excitation[J].International Journal of Non-Linear Mechanics,2002,37(8):1407~1419. 被引量:1
  • 7Ulyanov S V,Feng M.Stochastic analy sis of time-variant nonlinear dynamic systems.Part 1:The Fokker-PlanckKolmogorov equation approach in stochastic mechanics[J].Probabilistic Engineering Mechanics,1998,13(3):183~203. 被引量:1
  • 8Er Guo-Kang.Exponential closure method for some randomly excited non-linear systems[J].International Journal of Non-Linear Mechanics,2000,35(1):69~78. 被引量:1
  • 9Banik A K,Datta T K.Stochastic response and stability analysis of single leg articulated tower[C].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2003,2:21~28. 被引量:1
  • 10Wang Rubin,Yasuda,Kimihiko.Generalized analysis technique of the stationary FPK equation in nonlinear systems under Gaussian white noise excitations[J].International Journal of Engineering Science,2000,38(12):1315~1330. 被引量:1

共引文献76

同被引文献44

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部