期刊文献+

稀疏贝叶斯方法在通信告警序列预测中的应用研究 被引量:1

Sparse Bayesian method applied to telecommunication alarm sequences forecasting
下载PDF
导出
摘要 针对通信网告警中预示重大故障的告警数量少、不适合用传统预测方法的特点,提出了一种基于稀疏贝叶斯的通信告警序列预测方法(PBM),并与支持向量机(SVM)预测方法进行了比较。实验结果表明,PBM方法非常适用于小样本的通信告警预测,其不仅具有SVM的预测性能,而且在样本数目增加时的预测误差率要小于SVM,具有非常好的预测精度。 The alarm which indicates major failure in communication networks has a small number,in this case it is not suitable for traditional forecasting methods.This paper proposed a PBM,and compared it to SVM estimate method.The results show that,PBM is applicable to the small sample of telecommunication alarms predict.It not only has the predict performance of SVM,but also has lower predict errors than SVM when the number of samples increase,even it has a very good prediction accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2010年第4期1427-1429,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60572091)
关键词 告警序列 决策函数 核函数 稀疏贝叶斯 预测精度 alarm sequences decision function kernel function sparse Bayesian prediction accuracy
  • 相关文献

参考文献8

  • 1HAN J,PEI J,YIN Y,et al.Mining frequent patterns without candidate generation:a frequent-pattern tree approach[J].Data Mining and Knowledge Discovery,2004,1(8):53-87. 被引量:1
  • 2PI De-chang,QIN Xiao-lin,GU Wang-feng,et al.STBAR:a more efficient algorithm for association rule mining[C]//Proc of the 4th International Conference on Machine Learning and Cybernetics.Guangzhou:[s.n],2005:1529-1533. 被引量:1
  • 3VILALTA R,APTE C V,HELLERSTEIN J L,et al.Predictive algorithms in the management of computer systems[J].IBM Systems Journal,2002,41(3):461-474. 被引量:1
  • 4TAY F E H,CAO L J.A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines[J].Intelligent Data Analysis,2001,5(3):191-209. 被引量:1
  • 5BURGES C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. 被引量:1
  • 6WEISS G M,HIRSH H.Learning to predict rare events in events sequences[C]//Proc of the 4th International Conference on Knowledge Discovery and Data Mining.[S.l.]:AAAI Press,1998:359-363. 被引量:1
  • 7单莘,朱永宣,郭军.基于支持向量机的网络告警预测知识发现[J].微电子学与计算机,2007,24(6):35-37. 被引量:4
  • 8WILLIAMS O,BLAKE O,CIPOLLA R.Sparse Bayesian learning for efficient visual tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(8):1292-1304. 被引量:1

二级参考文献3

  • 1Hatonen K.Knowledge discovery from telecommunication network alarm databases[C].ICDE '96,Feb/March,1996 被引量:1
  • 2Gardner R D,Harle D A.Fault resolution and alarm correlation in high-speed networks using database mining techniques[M].ICSP,1997:1423~1427 被引量:1
  • 3Zheng Q.Intelligent search of correlated alarms from database containing noise data[M].Proc.8th IEEE/IFIP NOMS,2002:405~419 被引量:1

共引文献3

同被引文献19

引证文献1

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部