期刊文献+

基于EM-GA改进贝叶斯网络的研究及应用 被引量:5

Research on Bayesian network improved by EM-GA and its application
下载PDF
导出
摘要 为了解决软件风险分析中可能出现的数据不完整以及影响因素间关系复杂的问题,提出了一种改进贝叶斯网络的软件项目风险分析方法。将遗传算法和EM算法相结合得到EM-GA算法,利用EM-GA算法对软件项目分析过程中贝叶斯网络结构中的参数进行学习,同时优化网络结构,通过实例验证了该方法的有效性及可行性。 In order to solve the problem of incomplete data and complex relations among influencing factors which may appear in the software risk analysis,this paper presented a software project risk analysis process based on Bayesian networks which has been improved.Firstly,presented a EM-GA algorithm based on genetic algorithm.Then,used the algorithm to optimize the Bayesian networks structures and solve Bayesian parameter learning.Finally,the experiment results show this algorithm provide a new method for software project risk analysis process.
出处 《计算机应用研究》 CSCD 北大核心 2010年第4期1360-1362,共3页 Application Research of Computers
基金 国家教育部"新世纪优秀人才支持计划"资助项目(NCET-07-0908)
关键词 贝叶斯网络 EM-GA算法 软件项目 风险分析 Bayesian networks EM-GA algorithm software project risk analysis
  • 相关文献

参考文献11

  • 1BOEHM B W.Software risk management:principles and practices[J].IEEE Sofeware,2007,8(1):32-41. 被引量:1
  • 2LIU Xiao-qing,KANE G,BAMBROO M.An intelligent early warning system for software quality improvement and project management[C]//Proc of the 15th IEEE International Conference on Tools with Artificial Intelligence.Washington DC:IEEE Computer Society,2003:32. 被引量:1
  • 3KLASCHKE G.What the CHAOS chronicles 2003 reveal[R].San Diego:Cost Xpert Group,2004. 被引量:1
  • 4AKHTE A.Requirement reliability metrics for risk assessment[C]//Proc of Student Conference on Engineering Sciences and Technology.[S.l.]:NED University of Engineering,2004:452-461. 被引量:1
  • 5CHARETTE R.Software engineering risk analysis and management[M].New York:McGraw Hill,2006:178-189. 被引量:1
  • 6HOUSTON D X,MACKULAK G T,COLLOFELLO J S.Stochastic simulation of risk factor potential effects for software development risk management[J].The Journal of Systems and Software,2001,59(3):247-257. 被引量:1
  • 7冯楠,李敏强,寇纪淞,方德英.基于贝叶斯网络的软件项目风险分析过程[J].计算机工程与应用,2006,42(18):16-18. 被引量:8
  • 8黄友平..贝叶斯网络研究[D].中国科学院计算技术研究所,2005:
  • 9黄浩,宋瀚涛,陆玉昌.基于小生境遗传算法的贝叶斯网络结构学习算法研究[J].计算机应用研究,2007,24(4):100-103. 被引量:5
  • 10葛继科,邱玉辉,吴春明,蒲国林.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911-2916. 被引量:420

二级参考文献59

共引文献437

同被引文献43

  • 1范真诚.高校重点项目攻关的“揭榜挂帅”制度完善探析[J].中国高校科技,2021(S01):31-33. 被引量:9
  • 2张俊光,吕廷杰,马晓平.软件项目风险评估方法应用探讨[J].计算机应用研究,2006,23(10):76-77. 被引量:9
  • 3南利平.通信原理简明教程[M].北京:清华大学出版社,2007. 被引量:5
  • 4TSITSIKLIS J N. Decentralized detection with a large number of sensors[J]. Mathematics of Control, Signals, and Systems, 1988,1(2): 167-182. 被引量:1
  • 5TENNY R R, SANDELL N R. Detection with distributed sensors[J]. IEEE Transaction on Aerospace and Electronic Systems, 1981, AES-17(4): 501-509. 被引量:1
  • 6SADJADI F A. Hypotheses testing in a distribute environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986,AES-22(2): 134-137. 被引量:1
  • 7SARMA V V S, GOPALA R K A. Decentralized detection and estimation in distributed sensor systems[C]// Proceedings of the IEEE Cybernetics and Society Confenrence. Bombay and Delhi, India: IEEE, 1983: 438- 441. 被引量:1
  • 8LAUER G S, SANDELL N R. Distributed detection with waveform observations: Correlated observation Processes [C]//Proceedings of the 1981 American Controls Conference. Arlington, Virginia: [s.n.], 1981, 2: 812-819. 被引量:1
  • 9VEERAVALLI V V, BASAR T, POOR V H. Minimax robust decentralized detection[J]. IEEE Transaction on Information Theory, 1994, 40(1): 35-40. 被引量:1
  • 10CHAIR Z, VARSHNEY P K, Optimal data fusion in multiple sensor detection systems[J]. IEEE Transaction on Aerospace and Electronic System, 1986, AES-22(1): 98-101. 被引量:1

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部